We’ve spent the last couple of months on QuantStart backtesting various trading strategies utilising Python and pandas. The vectorised nature of pandas ensures that certain operations on large datasets are extremely rapid. However the forms of vectorised backtester that we have studied to date suffer from some drawbacks in the way that trade execution is simulated. In this series of articles we are going to discuss a more realistic approach to historical strategy simulation by constructing an event-driven backtesting environment using Python.
Before we delve into development of such a backtester we need to understand the concept of event-driven systems. Video games provide a natural use case for event-driven software and provide a straightforward example to explore. A video game has multiple components that interact with each other in a real-time setting at high framerates. This is handled by running the entire set of calculations within an “infinite” loop known as the event-loop or game-loop.
At each tick of the game-loop a function is called to receive the latest event, which will have been generated by some corresponding prior action within the game. Depending upon the nature of the event, which could include a key-press or a mouse click, some subsequent action is taken, which will either terminate the loop or generate some additional events. The process will then continue. Here is some example pseudo-code:
while True: # Run the loop forever
new_event = get_new_event() # Get the latest event
# Based on the event type, perform an action
if new_event.type == "LEFT_MOUSE_CLICK":
open_menu()
elif new_event.type == "ESCAPE_KEY_PRESS":
quit_game()
elif new_event.type == "UP_KEY_PRESS":
move_player_north()
# ... and many more events
redraw_screen() # Update the screen to provide animation
tick(50) # Wait 50 milliseconds
The code is continually checking for new events and then performing actions based on these events. In particular it allows the illusion of real-time response handling because the code is continually being looped and events checked for. As will become clear this is precisely what we need in order to carry out high frequency trading simulation.
Event-driven systems provide many advantages over a vectorised approach:
Although event-driven systems come with many benefits they suffer from two major disadvantages over simpler vectorised systems. Firstly they are significantly more complex to implement and test. There are more “moving parts” leading to a greater chance of introducing bugs. To mitigate this proper software testing methodology such as test-driven development can be employed.
Secondly they are slower to execute compared to a vectorised system. Optimal vectorised operations are unable to be utilised when carrying out mathematical calculations. We will discuss ways to overcome these limitations in later articles.
To apply an event-driven approach to a backtesting system it is necessary to define our components (or objects) that will handle specific tasks:
This is quite a basic model of a trading engine. There is significant scope for expansion, particularly in regard to how the Portfolio is used. In addition differing transaction cost models might also be abstracted into their own class hierarchy. At this stage it introduces needless complexity within this series of articles so we will not currently discuss it further. In later tutorials we will likely expand the system to include additional realism.
Here is a snippet of Python code that demonstrates how the backtester works in practice. There are two loops occuring in the code. The outer loop is used to give the backtester a heartbeat. For live trading this is the frequency at which new market data is polled. For backtesting strategies this is not strictly necessary since the backtester uses the market data provided in drip-feed form (see the bars.update_bars() line).
The inner loop actually handles the Events from the events Queue object. Specific events are delegated to the respective component and subsequently new events are added to the queue. When the events Queue is empty, the heartbeat loop continues:
# Declare the components with respective parameters
bars = DataHandler(..)
strategy = Strategy(..)
port = Portfolio(..)
broker = ExecutionHandler(..)
while True:
# Update the bars (specific backtest code, as opposed to live trading)
if bars.continue_backtest == True:
bars.update_bars()
else:
break
# Handle the events
while True:
try:
event = events.get(False)
except Queue.Empty:
break
else:
if event is not None:
if event.type == 'MARKET':
strategy.calculate_signals(event)
port.update_timeindex(event)
elif event.type == 'SIGNAL':
port.update_signal(event)
elif event.type == 'ORDER':
broker.execute_order(event)
elif event.type == 'FILL':
port.update_fill(event)
# 10-Minute heartbeat
time.sleep(10*60)
This is the basic outline of a how an event-driven backtester is designed. In the next article we will discuss the Event class hierarchy.