Die Ressourcen sind geladen. Beförderung...

Bewertung der Kapitalkurve für Backtest mit Hilfe des Werkzeugs "Pyfolio"

Schriftsteller:Gutes, Erstellt: 2020-06-23 09:55:35, Aktualisiert: 2023-10-31 21:02:34

img

Vorwort

Vor ein paar Tagen stellte sich heraus, dass die Gewinn- und Verlustkurve-Ausgabe des FMZ-Strategie-Backtest-Ergebnisses relativ einfach war, also dachte ich darüber nach, ob ich die Einkommensergebnisdaten erhalten und dann selbst verarbeiten sollte, um einen detaillierteren Kapitalkurvenbewertungsbericht zu erhalten und ihn grafisch anzuzeigen. Als ich anfing, die Ideen zu schreiben, fand ich, dass es nicht so einfach war, also frage ich mich, ob jemand die gleichen Ideen hat und bereits die entsprechenden Tools gemacht hat? Also suchte ich im Internet und fand heraus, dass es tatsächlich solche Tools gibt. Ich schaute mir mehrere Projekte auf GitHub an und wählte schließlichpyfolio.

Was ist Pyfolio?

pyfolioist eine von quantinc entwickelte Python-Bibliothek für Finanzportfolio-Performance und Risikoanalyse. Sie funktioniert gut mit der Zipline Open-Source-Backtest-Bibliothek. quantinc bietet auch umfassende Managementdienste für Fachleute, einschließlichZipline, Alphalens, Pyfolio, FactSetDaten usw.

Der Kern derpyfolioist das sogenannte sogenannte Tear Sheet, das aus einer Vielzahl unabhängiger Grafiken besteht, die ein umfassendes Bild der Leistung des Handelsalgorithmus liefern.

GitHub address: https://github.com/quantopian/pyfolio

Lernen Sie, mit Pyfolio zu arbeiten

Aufgrund der Tatsache, dass es nur wenige Online-Lernmaterialien für dieses Tool gibt, dauert es lange, bis ich es leicht benutzen kann.

PyFolioAPI-Referenz:

https://www.quantopian.com/docs/api-reference/pyfolio-api-reference#pyfolio-api-reference

Hier ist eine ausführlichere Einführung inpyfolioDie Plattform kann für das Backtesting von US-Aktien verwendet werden.pyfolioIch habe es nur grob gelernt. Es scheint, dass andere Funktionen ziemlich stark sind.

Installieren von pyfolio

Die Einrichtung vonpyfolioist relativ einfach, folgen Sie einfach den Anweisungen auf GitHub.

FMZ-Backtest-Ergebnisse durch pyfolio angezeigt

Nun, die Einführung ist hier, und begann das Thema zu betreten.

img

Klicken Sie auf die Schaltfläche neben dem Vollbildschirm in der obigen Abbildung in der schwebenden Gewinn-Verlust-Tabelle des Backtest-Ergebnisses und wählen Sie dann Download CSV aus. Das Format der erhaltenen CSV-Daten ist wie folgt (der Dateiname kann je nach Bedarf geändert werden):

img

Wenn Sie einen vergleichenden Benchmark für die Analyseergebnisse haben möchten, müssen Sie auch eine K-Line tägliche Daten des Handelsziels vorbereiten. Wenn es keine K-Line Daten gibt, können nur die Einkommensdaten auch analysiert werden, aber es werden mehrere weitere Indikatoren für die Ergebnisse der Benchmark-Datenanalyse geben, wie: Alpha, Beta usw.

Wir können K-Liniendaten direkt von der Plattform über die FMZ-Forschungsumgebung erhalten:

# Use the API provided by the FMZ research environment to obtain K-line data which equal to the revenue data
dfh = get_bars('bitfinex.btc_usd', '1d', start=str(startd), end=str(endd))

Nach der Vorbereitung der Daten können wir mit der Codierung beginnen.pyfolioUnd dann rufen Sie diecreate_returns_tear_sheetSchnittstelle vonpyfolioWir müssen vor allem inreturns, benchmark_rets=Noneundlive_start_date=Nonedrei Parameter.

DiereturnParameter ist Einkommensdaten erforderlich;benchmark_retsist die Referenzdaten, ist nicht erforderlich;live_start_datelive_start_dateDas ist nicht nötig.

Die Bedeutung dieses Parameters lautet: Wann hat IhrreturnsZum Beispiel, unsere eine Reihe vonreturnsoben, unter der Annahme, dass wir den realen Markt nach 2019-12-01 starten, und die vorherigen sind im Simulationsmarkt oder das Ergebnis eines Backtests, dann können wir es so festlegen:live_start_date = '2019-12-01'.

Wenn der Unterschied zwischen dem Inneren und dem Äußeren der Stichprobe groß ist, dann besteht eine hohe Wahrscheinlichkeit, dass es sich um eine Überanpassung handelt.

Wir können diese Analysefunktion in der Forschungsumgebung des FMZ implementieren, oder wir können sie lokal implementieren.

https://www.fmz.com/upload/asset/1379deaa35b22ee37de23.ipynb?name=%E5%88%A9%E7%94%A8pyfolio%E5%B7%A5%E5%85%B7%E8%AF%84%E4%BB%B7%E5%9B%9E%E6%B5%8B%E8%B5%84%E9%87%91%E6%9B%B2%E7%BA%BF(%E5%8E%9F%E5%88%9B).ipynb
# First, create a new "csv to py code.py" python file locally and copy the following code to generate the py code containing the CSV file of the fund curve downloaded from FMZ. Running the newly created py file locally will generate "chart_hex.py" file.

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import binascii

# The file name can be customized as needed, this example uses the default file name
filename = 'chart.csv'
with open(filename, 'rb') as f:
    content = f.read()
# csv to py
wFile = open(filename.split('.')[0] + '_hex.py', "w")
wFile.write("hexstr = bytearray.fromhex('" +
            bytes.decode(binascii.hexlify(content))
            + "').decode()\nwFile = open('" + filename + "', 'w')\nwFile.write(hexstr)\nwFile.close()")
wFile.close()
# Open the "chart_hex.py" file generated above, copy all the contents and replace the following code blocks, and then run the following code blocks one by one to get the chart.csv file

hexstr = bytearray.fromhex('efbbbf224461746554696d65222c22e6b5aee58aa8e79b88e4ba8f222c22e4ba8be4bbb6220a22323031392d31302d33312030303a30303a3030222c300a22323031392d31312d30312030303a30303a3030222c300a22323031392d31312d30322030303a30303a3030222c2d302e3032383434353837303635373338383930350a22323031392d31312d30332030303a30303a3030222c302e3030373431393439393432333839363936390a22323031392d31312d30342030303a30303a3030222c2d302e30323234373732373731373434313231370a22323031392d31312d30352030303a30303a3030222c2d302e30323033393930383333363836353735390a22323031392d31312d30362030303a30303a3030222c2d302e3034393935353039333230393332303435360a22323031392d31312d30372030303a30303a3030222c2d302e303434333232333634383035363033370a22323031392d31312d30382030303a30303a3030222c2d302e3032353631313934393330353935313637360a22323031392d31312d30392030303a30303a3030222c302e3032363331303433393432313739303536360a22323031392d31312d31302030303a30303a3030222c302e3033303232303332383333303436333137350a22323031392d31312d31312030303a30303a3030222c302e3033313230373133363936363633313133330a22323031392d31312d31322030303a30303a3030222c2d302e3031383533323831363136363038333135350a22323031392d31312d31332030303a30303a3030222c2d302e30313736393032353136363738333732320a22323031392d31312d31342030303a30303a3030222c2d302e3032323339313034373338373637393338360a22323031392d31312d31352030303a30303a3030222c2d302e3030383433363137313736363631333438370a22323031392d31312d31362030303a30303a3030222c302e3031373430363536343033313836383133330a22323031392d31312d31372030303a30303a3030222c302e303232393131353234343739303732330a22323031392d31312d31382030303a30303a3030222c302e3033323032363631303538383035373131340a22323031392d31312d31392030303a30303a3030222c302e303138393230323836383338373438380a22323031392d31312d32302030303a30303a3030222c302e30363632363938393337393232363738390a22323031392d31312d32312030303a30303a3030222c302e3036303835343430303337353130313033370a22323031392d31312d32322030303a30303a3030222c302e31343432363035363831333031303231330a22323031392d31312d32332030303a30303a3030222c302e32343239343037303935353332323336370a22323031392d31312d32342030303a30303a3030222c302e32313133303432303033353237373934310a22323031392d31312d32352030303a30303a3030222c302e323735363433303736313138343937380a22323031392d31312d32362030303a30303a3030222c302e323532343832323739343237363235360a22323031392d31312d32372030303a30303a3030222c302e32343931313136313839303039383437370a22323031392d31312d32382030303a30303a3030222c302e31313038373135373939323036393134310a22323031392d31312d32392030303a30303a3030222c302e313633343530313533373233393139390a22323031392d31312d33302030303a30303a3030222c302e31393838303132323332343735393737350a22323031392d31322d30312030303a30303a3030222c302e31363633373536393939313635393038350a22323031392d31322d30322030303a30303a3030222c302e32303638323732383333323337393630370a22323031392d31322d30332030303a30303a3030222c302e32303434323831303032303830393033320a22323031392d31322d30342030303a30303a3030222c302e323030353636323836353230383830360a22323031392d31322d30352030303a30303a3030222c302e31323434363439343330303739303635360a22323031392d31322d30362030303a30303a3030222c302e31303032343339383239393236303637332c302e31303032343339383239393236303637330a22323031392d31322d30372030303a30303a3030222c302e31303637313232383937343130373831360a22323031392d31322d30382030303a30303a3030222c302e31323839363336313133333032313036310a22323031392d31322d30392030303a30303a3030222c302e313337393030323234303239323136320a22323031392d31322d31302030303a30303a3030222c302e31313432333735383637323436303130350a22323031392d31322d31312030303a30303a3030222c302e31323638353037323134353130343038320a22323031392d31322d31322030303a30303a3030222c302e31343139333631313738343432333234330a22323031392d31322d31332030303a30303a3030222c302e31333838333632383537383138383536370a22323031392d31322d31342030303a30303a3030222c302e313136323031343031393435393734350a22323031392d31322d31352030303a30303a3030222c302e31363135333931303631363930313932330a22323031392d31322d31362030303a30303a3030222c302e31343937383138343836363238323231380a22323031392d31322d31372030303a30303a3030222c302e31353734393833333435363438393438320a22323031392d31322d31382030303a30303a3030222c302e32343234393031303233333139323635380a22323031392d31322d31392030303a30303a3030222c302e32313830363838353631363039303035350a22323031392d31322d32302030303a30303a3030222c302e323938383636303034333936303139340a22323031392d31322d32312030303a30303a3030222c302e33303135333036303934383834370a22323031392d31322d32322030303a30303a3030222c302e323938363835393334383634363038370a22323031392d31322d32332030303a30303a3030222c302e333039333035323733383735393130310a22323031392d31322d32342030303a30303a3030222c302e333834363231343935353136383931320a22323031392d31322d32352030303a30303a3030222c302e33343532373534363233383138313130360a22323031392d31322d32362030303a30303a3030222c302e33363235323332383833363737313035330a22323031392d31322d32372030303a30303a3030222c302e33343937363331393933333834333133360a22323031392d31322d32382030303a30303a3030222c302e33303732393733373234353434373938360a22323031392d31322d32392030303a30303a3030222c302e33323238383132323432363135363530370a22323031392d31322d33302030303a30303a3030222c302e33343134363537343239333438363535330a22323031392d31322d33312030303a30303a3030222c302e333435323733393139363237303738320a22323032302d30312d30312030303a30303a3030222c302e33353730313633323035353433343337340a22323032302d30312d30322030303a30303a3030222c302e33343937353937393034363236373934370a22323032302d30312d30332030303a30303a3030222c302e33373032333633333138303534353335370a22323032302d30312d30342030303a30303a3030222c302e33383636373137373837343037313635370a22323032302d30312d30352030303a30303a3030222c302e33383834373536373836393031343634330a22323032302d30312d30362030303a30303a3030222c302e34313331323236353139383433373731340a22323032302d30312d30372030303a30303a3030222c302e34323335323332383237303436333733350a22323032302d30312d30382030303a30303a3030222c302e34363837333531323838353035333330330a22323032302d30312d30392030303a30303a3030222c302e353436373135313832363033383332380a22323032302d30312d31302030303a30303a3030222c302e353530373037323136333937383830310a22323032302d30312d31312030303a30303a3030222c302e35353531373436393236393938310a22323032302d30312d31322030303a30303a3030222c302e353632323130363337343737323731330a22323032302d30312d31332030303a30303a3030222c302e353734373831373030393536383631370a22323032302d30312d31342030303a30303a3030222c302e353632383330303731353536353831350a22323032302d30312d31352030303a30303a3030222c302e363538323839383038313031393136380a22323032302d30312d31362030303a30303a3030222c302e363732323034393830303331333936370a22323032302d30312d31372030303a30303a3030222c302e363537313832383237323238323335380a22323032302d30312d31382030303a30303a3030222c302e363734393831383838383639373536330a22323032302d30312d31392030303a30303a3030222c302e363739373632303637393239383131330a22323032302d30312d32302030303a30303a3030222c302e363334313332373332393636313231370a22323032302d30312d32312030303a30303a3030222c302e363237353837313436323430323734370a22323032302d30312d32322030303a30303a3030222c302e363331313336373230353334393834370a22323032302d30312d32332030303a30303a3030222c302e3630313936323331393931343334360a22323032302d30312d32342030303a30303a3030222c302e363036343239313935383633313431360a22323032302d30312d32352030303a30303a3030222c302e35383130363933393531373337390a22323032302d30312d32362030303a30303a3030222c302e363133313034353130383436353937380a22323032302d30312d32372030303a30303a3030222c302e3632393938323638373737383035350a22323032302d30312d32382030303a30303a3030222c302e363831333134363734333130313533350a22323032302d30312d32392030303a30303a3030222c302e373134303533393533383834313233350a22323032302d30312d33302030303a30303a3030222c302e373433383032353331363031313135360a22323032302d30312d33312030303a30303a3030222c302e373535393639303935383539313330370a22323032302d30322d30312030303a30303a3030222c302e373533383030313630323737353438310a22323032302d30322d30322030303a30303a3030222c302e373534343434333437323732343132350a22323032302d30322d30332030303a30303a3030222c302e373435373138393532343434373738330a22323032302d30322d30342030303a30303a3030222c302e3738373636303035313130343530340a22323032302d30322d30352030303a30303a3030222c302e373935393939343930353732393834360a22323032302d30322d30362030303a30303a3030222c302e373935323037323039363636373034390a22323032302d30322d30372030303a30303a3030222c302e3832393234363232343838363336350a22323032302d30322d30382030303a30303a3030222c302e383239393034373635353939363035350a22323032302d30322d30392030303a30303a3030222c302e383338363639323137313033313436350a22323032302d30322d31302030303a30303a3030222c302e38353830313634373631380a22323032302d30322d31312030303a30303a3030222c302e383130323530393437393936313938330a22323032302d30322d31322030303a30303a3030222c302e383433323631313436333636313030320a22323032302d30322d31332030303a30303a3030222c302e383535383536353834363731333632320a22323032302d30322d31342030303a30303a3030222c302e383337323730363631383738303935360a22323032302d30322d31352030303a30303a3030222c302e383333353332343038383538303234330a22323032302d30322d31362030303a30303a3030222c302e383636383832343034353334343633320a22323032302d30322d31372030303a30303a3030222c302e383836363634323232323038333831310a22323032302d30322d31382030303a30303a3030222c302e393032363430303937303731373033390a22323032302d30322d31392030303a30303a3030222c302e383832373838333631373939333438380a22323032302d30322d32302030303a30303a3030222c302e383530303035363732363738333734320a22323032302d30322d32312030303a30303a3030222c302e3737383436363530373530313739360a22323032302d30322d32322030303a30303a3030222c302e373737383734393835393335313437350a22323032302d30322d32332030303a30303a3030222c302e373731333834393530303532383132330a22323032302d30322d32342030303a30303a3030222c302e373937383030363936353434323134340a22323032302d30322d32352030303a30303a3030222c302e373736383231373934313333363939370a22323032302d30322d32362030303a30303a3030222c302e373938353333313136353336313831310a22323032302d30322d32372030303a30303a3030222c302e383530343335363139343238353239390a22323032302d30322d32382030303a30303a3030222c302e383734333333393138383334393638310a22323032302d30322d32392030303a30303a3030222c302e3838383336363333393338343837380a22323032302d30332d30312030303a30303a3030222c302e383933393737393637343631333438380a22323032302d30332d30322030303a30303a3030222c302e3931323431323035313530303336362c302e3931323431323035313530303336360a22323032302d30332d30332030303a30303a3030222c302e383733353632323939353238363532330a22323032302d30332d30342030303a30303a3030222c302e383532353336353235333030343039310a22323032302d30332d30352030303a30303a3030222c302e383633323633313830363733313335350a22323032302d30332d30362030303a30303a3030222c302e383734303237343632353730373730350a22323032302d30332d30372030303a30303a3030222c302e383634323439323631363431353135360a22323032302d30332d30382030303a30303a3030222c302e38373630353132313331363135333031').decode()
wFile = open('chart.csv', 'w')
wFile.write(hexstr)
wFile.close()

!ls -la

cat chart.csv
# Install pyfolio library in research environment

!pip3 install --user pyfolio
import pandas as pd
import sys
sys.path.append('/home/quant/.local/lib/python3.6/site-packages')
import pyfolio as pf
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
from fmz import * # import all FMZ functions

# Read fund curve data, FMZ platform download, cumulative income data
df=pd.read_csv(filepath_or_buffer='chart.csv')
# Convert to date format
df['Date'] = pd.to_datetime(df['DateTime'],format='%Y-%m-%d %H:%M:%S')
# Get start and end time
startd = df.at[0,'Date']
endd = df.at[df.shape[0]-1,'Date']

# Read the target asset daily K-line data, and use it as the benchmark income data
# Use the API provided by the FMZ research environment to obtain K-line data equal to the revenue data
dfh = get_bars('bitfinex.btc_usd', '1d', start=str(startd), end=str(endd))
dfh=dfh[['close']]
# Calculate the daily rise and fall based on the closing price of k-line data
dfh['close_shift'] = dfh['close'].shift(1)
dfh = dfh.fillna(method='bfill') #  Look down for the nearest non-null value, fill the exact position with this value, full name "backward fill"
dfh['changeval']=dfh['close']-dfh['close_shift']
dfh['change']=dfh['changeval']/dfh['close_shift']
# Frequency changes keep 6 decimal places
dfh = dfh.round({'change': 6})

# Revenue data processing, the FMZ platform obtains the cumulative revenue, and converts it to the daily revenue change rate
df['return_shift'] = df['Floating Profit and Loss'].shift(1)
df['dayly']=df['Floating P&L']-df['return_shift']
chushizichan = 3 #  Initial asset value in FMZ backtest
df['returns'] = df['dayly']/(df['return_shift']+chushizichan)
df=df[['Date','Floating Profit and Loss','return_shift','dayly','returns']]
df = df.fillna(value=0.0)
df = df.round({'dayly': 3}) # retain three decimal places
df = df.round({'returns': 6})

# Convert pd.DataFrame to pd.Series required for pyfolio earnings
df['Date'] = pd.to_datetime(df['Date'])
df=df[['Date','returns']]
df.set_index('Date', inplace=True)
# Processed revenue data
returns = df['returns'].tz_localize('UTC')

# Convert pd.DataFrame to pd.Series required for pyfolio benchmark returns
dfh=dfh[['change']]
dfh = pd.Series(dfh['change'].values, index=dfh.index)
# Processed benchmark data
benchmark_rets = dfh

# The point in time when real-time trading begins after the strategy's backtest period.
live_start_date = '2020-02-01'

# Call pyfolio's API to calculate and output the fund curve analysis result graph
# "returns" Parameters are required, the remaining parameters can not be entered
pf.create_returns_tear_sheet(returns,benchmark_rets=benchmark_rets,live_start_date=live_start_date)

Das Ergebnis der Ausgangsanalyse:

img img

Interpretation der Ergebnisse

Es gibt eine Menge von Output-Daten, wir müssen uns beruhigen und lernen, was diese Indikatoren bedeuten. Lassen Sie mich ein paar von ihnen vorstellen. Nachdem wir die Einführung in die relevanten Indikatoren gefunden haben und die Bedeutung der Indikatoren verstanden haben, können wir unseren Handelsstrategiestatus interpretieren.

  • Jahresrendite

Die jährliche Rendite wird berechnet, indem die aktuelle Rendite (tägliche Rendite, wöchentliche Rendite, monatliche Rendite usw.) in eine jährliche Rendite umgewandelt wird. Es handelt sich um eine theoretische Rendite, nicht um eine tatsächlich erzielte Rendite. Die jährliche Rendite muss von der jährlichen Rendite unterschieden werden. Die jährliche Rendite bezieht sich auf die Rendite für ein Jahr der Strategieausführung und ist die tatsächliche Rendite.

  • Kumulative Erträge

Das am einfachsten verständliche Konzept ist die Rendite der Strategie, die die Veränderungsrate der gesamten Vermögenswerte vom Anfang bis zum Ende der Strategie darstellt. Jährliche Volatilität Die jährliche Volatilitätsrate wird verwendet, um das Volatilitätsrisiko des Anlageziels zu messen.

  • Sharpe-Verhältnis

Beschreibt die überschüssige Rendite, die die Strategie unter dem gesamten Einheitsrisiko erzielen kann.

  • Maximaler Abzug

Der maximale Rückzug ist normalerweise je kleiner, desto besser.

  • Omega-Verhältnis

Ein weiterer Risiko-Lohn-Leistungsindikator. Sein größter Vorteil gegenüber dem Sharpe-Verhältnis ist - durch Konstruktion - es berücksichtigt alle statistischen Momente, während der Sharpe-Verhältnis nur die ersten beiden Momente berücksichtigt.

  • Sortino-Verhältnis

Beschreibt die überschüssige Rendite, die die Strategie unter dem Abwärtsrisiko der Einheit erzielen kann.

  • Täglicher Risikovermögenswert

Täglicher Risikowert - Ein weiterer sehr beliebter Risikoindikator, der in diesem Fall bedeutet, dass in 95% der Fälle die Position (Portfolio) für einen weiteren Tag gehalten wird und der Verlust nicht mehr als 1,8% beträgt.

Referenz:https://towardsdatascience.com/the-easiest-way-to-evaluate-the-performance-of-trading-strategies-in-python-4959fd798bb3

  • Schwanzverhältnis

Wählen Sie die 95. und 5. Quantile für die Verteilung der täglichen Rendite aus und teilen Sie sie dann, um den absoluten Wert zu erhalten.

  • Stabilität

Dies nennt man Stabilität. In der Tat ist es sehr einfach, das heißt, wie sehr das Zeitzuwachs den kumulativen Nettowert erklärt, das heißt, das r-Quadrat der Regression.

Referenz:https://blog.csdn.net/qtlyx/article/details/88724236

Kleine Vorschläge

Es wird gehofft, dass FMZ die Evaluierungsfunktion der Rich Capital Curve erhöhen und die Speicherfunktion historischer Backtest-Ergebnisse erhöhen kann, so dass es die Backtest-Ergebnisse bequemer und professioneller anzeigen und Ihnen helfen kann, bessere Strategien zu erstellen.


Mehr