Im letzten Artikel wurde eine sehr einfache Python-Strategie implementiert:
Strategie-Quellcode nach der Transformation:
'''backtest
start: 2019-02-20 00:00:00
end: 2020-01-10 00:00:00
period: 1m
exchanges: [{"eid":"OKEX","currency":"BTC_USDT"},{"eid":"OKEX","currency":"ETH_USDT","stocks":30},{"eid":"OKEX","currency":"LTC_USDT","stocks":100}]
'''
import time
import json
params = {
"arrBasePrice": [-1, -1, -1], # -1
"arrRatio": [0.05, 0.05, 0.05], # 0.05
"arrAcc": [], # _C(exchange.GetAccount)
"arrLastCancelAll": [0, 0, 0], # 0
"arrMinStocks": [0.01, 0.01, 0.01], # 0.01
"arrPricePrecision": [2, 2, 2], # 2
"arrAmountPrecision": [3, 2, 2], # 2
"arrTick":[]
}
def CancelAll(e):
while True :
orders = _C(e.GetOrders)
for i in range(len(orders)) :
e.CancelOrder(orders[i]["Id"], orders[i])
if len(orders) == 0 :
break
Sleep(1000)
def process(e, index):
global params
ticker = _C(e.GetTicker)
params["arrTick"][index] = ticker
if params["arrBasePrice"][index] == -1 :
params["arrBasePrice"][index] = ticker.Last
if ticker.Last - params["arrBasePrice"][index] > 0 and (ticker.Last - params["arrBasePrice"][index]) / params["arrBasePrice"][index] > params["arrRatio"][index]:
params["arrAcc"][index] = _C(e.GetAccount)
if params["arrAcc"][index].Balance * params["arrRatio"][index] / ticker.Last > params["arrMinStocks"][index]:
e.Buy(ticker.Last, params["arrAcc"][index].Balance * params["arrRatio"][index] / ticker.Last)
params["arrBasePrice"][index] = ticker.Last
if ticker.Last - params["arrBasePrice"][index] < 0 and (params["arrBasePrice"][index] - ticker.Last) / params["arrBasePrice"][index] > params["arrRatio"][index]:
params["arrAcc"][index] = _C(e.GetAccount)
if params["arrAcc"][index].Stocks * params["arrRatio"][index] > params["arrMinStocks"][index]:
e.Sell(ticker.Last, params["arrAcc"][index].Stocks * params["arrRatio"][index])
params["arrBasePrice"][index] = ticker.Last
ts = time.time()
if ts - params["arrLastCancelAll"][index] > 60 * 5 :
CancelAll(e)
params["arrLastCancelAll"][index] = ts
def main():
global params
for i in range(len(exchanges)) :
params["arrAcc"].append(_C(exchanges[i].GetAccount))
params["arrTick"].append(_C(exchanges[i].GetTicker))
exchanges[i].SetPrecision(params["arrPricePrecision"][i], params["arrAmountPrecision"][i])
for key in params :
if len(params[key]) < len(exchanges):
raise "params error!"
while True:
tblAcc = {
"type" : "table",
"title": "account",
"cols": ["Account information"],
"rows": []
}
tblTick = {
"type" : "table",
"title": "ticker",
"cols": ["Market information"],
"rows": []
}
for i in range(len(exchanges)):
process(exchanges[i], i)
for i in range(len(exchanges)):
tblAcc["rows"].append([json.dumps(params["arrAcc"][i])])
tblTick["rows"].append([json.dumps(params["arrTick"][i])])
LogStatus(_D(), "\n`" + json.dumps([tblAcc, tblTick]) + "`")
Sleep(500)
Haben Sie bei einem Vergleich festgestellt, daß sich dieser Code stark von dem im vorigen Artikel beschriebenen unterscheidet?
In der Tat ist die Handelslogik genau die gleiche, ohne jegliche Veränderung. Wir ändern nur die Strategie zu einer Mehrfachart, wir können nicht die vorherige Form von
Dann verkapseln Sie den Code der Handelslogik in eine Funktionprocess
. Auf der Hauptstrategie Schleife, rufen Sie diese Funktion iterativ nach den hinzugefügten Handel Paare, und lassen Sie jedes Handelspaar den Handel Logikcode einmal ausführen.
- Iterativer Anruf:
for i in range(len(exchanges)):
process(exchanges[i], i)
params = {
"arrBasePrice": [-1, -1, -1], # -1
"arrRatio": [0.05, 0.05, 0.05], # 0.05
"arrAcc": [], # _C(exchange.GetAccount)
"arrLastCancelAll": [0, 0, 0], # 0
"arrMinStocks": [0.01, 0.01, 0.01], # 0.01
"arrPricePrecision": [2, 2, 2], # 2
"arrAmountPrecision": [3, 2, 2], # 2
"arrTick":[]
}
Dieses Design ermöglicht es jedem Handelspaar, seine eigenen Parameter zu haben, da jedes Handelspaar eine große Preisdifferenz haben kann und die Parameter auch unterschiedlich sein können, was manchmal eine unterschiedliche Einstellung erfordert.
Alle Funktionen absagen Diese Funktion modifiziert nur einen kleinen Code und dann denken Sie über die Absicht einer solchen Modifikation nach.
Daten des Statusbalkendiagramms Ein Diagramm wird hinzugefügt, um die Marktdaten und Kontovermögensdaten in der Statusleiste anzuzeigen, so dass die entsprechenden Vermögenswerte und der Markt jedes Börsenobjekts in Echtzeit angezeigt werden können. Ist es leicht, eine Python-Strategie in eine Multi-Species-Strategie zu ändern, nachdem man die oben genannten Designideen beherrscht hat?
Die Strategie dient ausschließlich Lern- und Backtestingzwecken, und Sie können sie optimieren und aktualisieren, wenn Sie interessiert sind.Strategieadresse