- Das Strategieplatz
- Das Quantifizierungswerkzeug für Seeleuchte - Original E-Ratio für Seeleuchte
Das Quantifizierungswerkzeug für Seeleuchte - Original E-Ratio für Seeleuchte
Schriftsteller:
Die Straße, Datum: 2021-03-04
Tags:
/*backtest
start: 2018-01-01 00:00:00
end: 2021-03-04 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"OKEX","currency":"BTC_USDT"}]
*/
/**
* ATR计算
* @param records
* @private
*/
function _ATR(records, period) {
var acount = 0;
var len = records.length;
for (var i = len-1; i >= len-period; i--) {
var decide = Math.abs(records[i].High - records[i].Low);
acount += decide;
}
return (acount / period);
}
/**
* 生成从minNum到maxNum的随机数
* @param minNum
* @param maxNum
* @return {number}
*/
function randomNum(minNum,maxNum){
switch(arguments.length){
case 1:
return parseInt(Math.random()*minNum+1,10);
case 2:
return parseInt(Math.random()*(maxNum-minNum+1)+minNum,10);
default:
return 0;
}
}
/**
* 查询时间间隔
* @param periodTime
* @param periodType
*/
function getTimeInter(periodTime, periodType) {
if("day" == periodType) {
return (1000 * 60 * 60 * 24) * parseInt(periodTime);
}else if("hour" == periodType) {
return (1000 * 60 * 60) * parseInt(periodTime);
}else {
return (1000 * 60) * parseInt(periodTime);
}
}
/**
* E比率入市信号记录:每次开仓时调用
* @direction "BUY"-做多; "SELL":做空
* @param kPeriod 入市时atr计算所使用的K线周期
* atrPeriod入市时atr计算选择的时间范围
* kPeriod = PERIOD_D1; atrPeriod = 20 表示计算过去20天每天的平均波幅
* @private
*/
function _Enter_Market_Record(ex, price, direction, kPeriod, atrPeriod) {
// 计算ATR
var records = ex.GetRecords(kPeriod);
var atr = _ATR(records, atrPeriod);
var now = new Date().getTime();
var enterMarketRecord = {"enterId" : randomNum(1000000, 9999999), "date" : now, "dateStr": _D(now), "price" : price, "direction" : direction, "atr" : atr};
Log("入市点:" + JSON.stringify(enterMarketRecord));
var enterMarketRecords = _G("enterMarketRecords");
if(enterMarketRecords == null) {
enterMarketRecords = new Array();
}
enterMarketRecords.push(enterMarketRecord);
_G("enterMarketRecords", enterMarketRecords);
}
/**
* E比率计算:
* @param periodTime=1;periodType=day 表示计算入市后1天的E比率
* periodTime=1;periodType=hour 表示计算入市后1小时的E比率
* periodTime=1;periodType=min 表示计算入市后1分钟的E比率
* @private
*/
function _E(periodTime, periodType, ex) {
var enterMarketRecords = _G("enterMarketRecords");
if (enterMarketRecords != null && enterMarketRecords.length > 0) {
var ticker = ex.GetTicker();
var currPrice = parseFloat(ticker.Last);
//计算设定周期的时间间隔
var timeInter = getTimeInter(periodTime, periodType);
// 当前时间节点
var now = new Date().getTime();
// 每时每刻都记录每个入市点之后一段时间内的最高点和最低点(通过K线获取的时间范围有误差)
for (var i=0; i<enterMarketRecords.length; i++) {
var enterMarketRec = enterMarketRecords[i];
var inter = now - parseInt(enterMarketRec.date);
if (inter < timeInter) {
// 记录入市点后的最高点和最低点
var high_low = _G((enterMarketRec.enterId+""));
if (high_low == null) {
var high = currPrice > enterMarketRec.price ? currPrice : enterMarketRec.price;
var low = currPrice < enterMarketRec.price ? currPrice : enterMarketRec.price;
high_low = {"highest" : high, "lowest" : low};
_G((enterMarketRec.enterId+""), high_low);
} else {
var high = currPrice > high_low.highest ? currPrice : high_low.highest;
var low = currPrice < high_low.lowest ? currPrice : high_low.lowest;
high_low = {"highest" : high, "lowest" : low};
_G((enterMarketRec.enterId+""), high_low);
}
//Log("high_low" + JSON.stringify(high_low));
}
}
// 每次看最开始的那个入市点是否到检测时间,到了就计算并将该入市点从队列移除
var enterMarketRecord0 = enterMarketRecords[0];
if (now - enterMarketRecord0.date >= timeInter) {
// 计算MAE和MFE
var l_h = _G((enterMarketRecord0.enterId+""));
var mae = 0;
var mfe = 0;
if (enterMarketRecord0.direction == 'UP') {
if (l_h.highest > enterMarketRecord0.price) {
mae = l_h.highest - enterMarketRecord0.price;
}
if (l_h.lowest < enterMarketRecord0.price) {
mfe = enterMarketRecord0.price - l_h.lowest;
}
}
if (enterMarketRecord0.direction == 'DOWN') {
if (l_h.lowest < enterMarketRecord0.price) {
mae = enterMarketRecord0.price - l_h.lowest;
}
if (l_h.highest > enterMarketRecord0.price) {
mfe = l_h.highest - enterMarketRecord0.price;
}
}
// 将MAE和MFE分别除以入市时的ATR(根据波动性做出调整,将不同市场标准化)
mae = parseFloat(mae/enterMarketRecord0.atr);
mfe = parseFloat(mfe/enterMarketRecord0.atr);
// 计算平均MAE和MFE并记录
var mae_avg = _G("mae_avg");
var mfe_avg = _G("mfe_avg");
if (mae_avg == null) {
mae_avg = {"mae":mae, "times":1};
} else {
mae = parseFloat((mae_avg.mae + mae)/2);
mae_avg = {"mae":mae, "times":mae_avg.times+1};
}
if (mfe_avg == null) {
mfe_avg = {"mfe":mfe, "times":1};
} else {
mfe = parseFloat((mfe_avg.mfe + mfe)/2);
mfe_avg = {"mfe":mfe, "times":mfe_avg.times+1};
}
var E_ = parseFloat(mae_avg.mae/mfe_avg.mfe);
Log("E-比率=" + E_ + "计算最新入市点:" + JSON.stringify(enterMarketRecord0) + "后,[总入市点数量]" + mfe_avg.times + ",[记录的高低点]" + JSON.stringify(l_h) + "#ff0000");
// 记录计算的MAE和MFE并将该入市点从队列清除
_G("mae_avg", mae_avg);
_G("mfe_avg", mfe_avg);
enterMarketRecords.shift();
// 重新加入入市点之后再记录最高最低点
_G((enterMarketRecord0.enterId+""), null);
_G((enterMarketRecord0.enterId+""), null);
}
}
}
/**
* 使用唐奇安通道突破+趋势过滤器组合判断入市点,并使用工具方法计算E-率
* 这里只简单测上涨变下跌和下跌变上涨的入市点,并不是完全的唐奇安突破入市
*/
function tqaTest(ex) {
// 获取过去20天的最高和最低点
var records = ex.GetRecords(PERIOD_D1);
var highest = TA.Highest(records, 20, 'High');
var lowest = TA.Lowest(records, 20, 'Low');
//Log("highest:" + highest + ",lowest:" + lowest);
var ticker = ex.GetTicker();
var currPrice = parseFloat(ticker.Last);
var times = 0;
if (currPrice > highest || currPrice < lowest) {
var ma50 = TA.MA(records, 50);
var ma300 = TA.MA(records, 300);
var lastDirection = _G("lastDirection");
if (currPrice > highest && ma50[ma50.length-1] > ma300[ma300.length-1]) {
// 开始做多,记录入市点
if (lastDirection == null || lastDirection == "DOWN") {
_Enter_Market_Record(ex, currPrice, "UP", PERIOD_D1, 20);
_G("lastDirection", "UP");
}
}
if (currPrice < lowest && ma50[ma50.length-1] < ma300[ma300.length-1]) {
// 开始做空,记录入市点
if (lastDirection == null || lastDirection == "UP"){
_Enter_Market_Record(ex, currPrice, "DOWN", PERIOD_D1, 20);
_G("lastDirection", "DOWN");
}
}
}
//计算E70:入市后70天内的E-比率,要在while(true)循环里调用
_E(70, "day", ex);
}
function main() {
while (true) {
tqaTest(exchanges[0]);
Sleep(500);
}
}
Weitere Informationen