Das ist meine neue, solide Strategie: Wenn Sie glauben, dass
Ich habe mit vielen Paaren und in vielen Zeitrahmen getestet und habe mit nur kleinen Änderungen der Einstellungen Gewinn erzielt. Ich schlage vor, es für den Intraday-Handel zu verwenden.
Wenn Ihr Handelsstil eher auf Scalping und/oder Pullbacks ausgerichtet ist, ist diese Strategie nicht für Sie.
Diese Strategie verwendet gleitende Durchschnitte, die auf Fourierwellen angewendet werden, um die Trendrichtung vorherzusagen.
Wie die Strategie funktioniert: - Kaufen, wenn der schnelle MA über dem mittleren MA und der Preis über dem langsamen MA liegt, was als Trendindikator dient. - Verkaufen, wenn der schnelle MA unter dem mittleren MA und der Preis unter dem langsamen MA liegt, was als Trendindikator dient.
Strategie verwendet eine Menge von Pyramiden-Orders, weil, wenn Sie in einer flachen Marktphase sind, wird es 1 oder 2 Aufträge mit einem Verlust zu schließen, aber wenn ein großer Trend beginnt, wird es Gewinn in einer Menge von Aufträgen haben.
Wenn Sie also die Strategieergebnisse sorgfältig analysieren, werden Sie feststellen, dass
Danke an alle Schriftsteller, die im Code für ihre Snippets erwähnt wurden.
Ich habe auch eine Studie mit Warnungen. Nächste Verbesserung (nur für diejenigen, die an diesem Skript interessiert sind und mir folgen): Studie mit Warnungen auf mehreren Tickern alle auf einmal.
Wie man Strategien einsetzt und gemeinsam studiert: 1- Fügen Sie zuerst die Strategie hinzu, damit Ihr Arbeitsplatz so sauber wie möglich ist. 2. Öffnen Sie die Registerkarte Strategy Tester am Fuß der Seite. 3- Ändern Sie die Einstellungen, um beste Ergebnisse zu erzielen (Gewinn, Gewinnfaktor, Abzug). 4. Fügen Sie Ihrem Diagramm mit der gleichen Strategie ein Studium mit Warnungen hinzu. Ich werde Ihnen eine detaillierte Installationsanleitung mit dem Studium zur Verfügung stellen!
Zurückprüfung
/*backtest start: 2022-04-25 00:00:00 end: 2022-05-24 23:59:00 period: 10m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © 03.freeman //@version=4 strategy("FTSMA", overlay=true, precision=6, initial_capital=10000,calc_on_every_tick=true, pyramiding=10, default_qty_type=strategy.fixed, default_qty_value=10000, currency=currency.EUR) src=input(close,"Source") slowMA=input(200,"Slow MA period") mediumMA=input(20,"Mid MA period") fastMA=input(5,"Fast MA period") plotSMA=input(true,"Use MA") sin1=input(1,"First sinusoid",minval=1) sin2=input(2,"Second sinusoid",minval=1) sin3=input(3,"Third sinusoid",minval=1) smoothinput = input('EMA', title = "MA Type", options =['EMA', 'SMA', 'ALMA','FRAMA','RMA', 'SWMA', 'VWMA','WMA','LinearRegression']) linearReg=input(false, "Use linear regression?") linregLenght=input(13, "Linear regression lenght") linregOffset=input(0, "Linear regression offset") //------FRAMA ma--------- ma(src, len) => float result = 0 int len1 = len/2 frama_SC=200 frama_FC=1 e = 2.7182818284590452353602874713527 w = log(2/(frama_SC+1)) / log(e) // Natural logarithm (ln(2/(SC+1))) workaround H1 = highest(high,len1) L1 = lowest(low,len1) N1 = (H1-L1)/len1 H2_ = highest(high,len1) H2 = H2_[len1] L2_ = lowest(low,len1) L2 = L2_[len1] N2 = (H2-L2)/len1 H3 = highest(high,len) L3 = lowest(low,len) N3 = (H3-L3)/len dimen1 = (log(N1+N2)-log(N3))/log(2) dimen = iff(N1>0 and N2>0 and N3>0,dimen1,nz(dimen1[1])) alpha1 = exp(w*(dimen-1)) oldalpha = alpha1>1?1:(alpha1<0.01?0.01:alpha1) oldN = (2-oldalpha)/oldalpha N = (((frama_SC-frama_FC)*(oldN-1))/(frama_SC-1))+frama_FC alpha_ = 2/(N+1) alpha = alpha_<2/(frama_SC+1)?2/(frama_SC+1):(alpha_>1?1:alpha_) frama = 0.0 frama :=(1-alpha)*nz(frama[1]) + alpha*src result := frama result // ----------MA calculation - ChartArt and modified by 03.freeman------------- calc_ma(src,l) => _ma = smoothinput=='SMA'?sma(src, l):smoothinput=='EMA'?ema(src, l):smoothinput=='WMA'?wma(src, l):smoothinput=='LinearRegression'?linreg(src, l,0):smoothinput=='VWMA'?vwma(src,l):smoothinput=='RMA'?rma(src, l):smoothinput=='ALMA'?alma(src,l,0.85,6):smoothinput=='SWMA'?swma(src):smoothinput=='FRAMA'?ma(sma(src,1),l):na //---------------------------------------------- //pi = acos(-1) // Approximation of Pi in _n terms --- thanks to e2e4mfck f_pi(_n) => _a = 1. / (4. * _n + 2) _b = 1. / (6. * _n + 3) _pi = 0. for _i = _n - 1 to 0 _a := 1 / (4. * _i + 2) - _a / 4. _b := 1 / (6. * _i + 3) - _b / 9. _pi := (4. * _a) + (4. * _b) - _pi pi=f_pi(20) //---Thanks to xyse----https://www.tradingview.com/script/UTPOoabQ-Low-Frequency-Fourier-Transform/ //Declaration of user-defined variables N = input(defval=64, title="Lookback Period", type=input.integer, minval=2, maxval=600, confirm=false, step=1, options=[2,4,8,16,32,64,128,256,512,1024,2048,4096]) //Real part of the Frequency Domain Representation ReX(k) => sum = 0.0 for i=0 to N-1 sum := sum + src[i]*cos(2*pi*k*i/N) return = sum //Imaginary part of the Frequency Domain Representation ImX(k) => sum = 0.0 for i=0 to N-1 sum := sum + src[i]*sin(2*pi*k*i/N) return = -sum //Get sinusoidal amplitude from frequency domain ReX_(k) => case = 0.0 if(k!=0 and k!=N/2) case := 2*ReX(k)/N if(k==0) case := ReX(k)/N if(k==N/2) case := ReX(k)/N return = case //Get sinusoidal amplitude from frequency domain ImX_(k) => return = -2*ImX(k)/N //Get full Fourier Transform x(i, N) => sum1 = 0.0 sum2 = 0.0 for k=0 to N/2 sum1 := sum1 + ReX_(k)*cos(2*pi*k*i/N) for k=0 to N/2 sum2 := sum2 + ImX_(k)*sin(2*pi*k*i/N) return = sum1+sum2 //Get single constituent sinusoid sx(i, k) => sum1 = ReX_(k)*cos(2*pi*k*i/N) sum2 = ImX_(k)*sin(2*pi*k*i/N) return = sum1+sum2 //Calculations for strategy SLOWMA = plotSMA?calc_ma(close+sx(0,sin1),slowMA):close+sx(0,sin1) MEDMA = plotSMA?calc_ma(close+sx(0,sin2),mediumMA):close+sx(0,sin2) FASTMA = plotSMA?calc_ma(close+sx(0,sin3),fastMA):close+sx(0,sin3) SLOWMA := linearReg?linreg(SLOWMA,linregLenght,linregOffset):SLOWMA MEDMA := linearReg?linreg(MEDMA,linregLenght,linregOffset):MEDMA FASTMA := linearReg?linreg(FASTMA,linregLenght,linregOffset):FASTMA //Plot 3 Low-Freq Sinusoids plot(SLOWMA, color=color.green) plot(MEDMA, color=color.red) plot(FASTMA, color=color.blue) // Strategy: (Thanks to JayRogers) // === STRATEGY RELATED INPUTS === // the risk management inputs inpTakeProfit = input(defval = 0, title = "Take Profit Points", minval = 0) inpStopLoss = input(defval = 0, title = "Stop Loss Points", minval = 0) inpTrailStop = input(defval = 0, title = "Trailing Stop Loss Points", minval = 0) inpTrailOffset = input(defval = 0, title = "Trailing Stop Loss Offset Points", minval = 0) // === RISK MANAGEMENT VALUE PREP === // if an input is less than 1, assuming not wanted so we assign 'na' value to disable it. useTakeProfit = inpTakeProfit >= 1 ? inpTakeProfit : na useStopLoss = inpStopLoss >= 1 ? inpStopLoss : na useTrailStop = inpTrailStop >= 1 ? inpTrailStop : na useTrailOffset = inpTrailOffset >= 1 ? inpTrailOffset : na longCondition = FASTMA>MEDMA and close > SLOWMA //crossover(FASTMA, MEDMA) and close > SLOWMA if (longCondition) strategy.entry("Long Entry", strategy.long) shortCondition = FASTMA<MEDMA and close < SLOWMA //crossunder(FASTMA, MEDMA) and close < SLOWMA if (shortCondition) strategy.entry("Short Entry", strategy.short) // === STRATEGY RISK MANAGEMENT EXECUTION === // finally, make use of all the earlier values we got prepped strategy.exit("Exit Buy", from_entry = "Long Entry", profit = useTakeProfit, loss = useStopLoss, trail_points = useTrailStop, trail_offset = useTrailOffset) strategy.exit("Exit Sell", from_entry = "Short Entry", profit = useTakeProfit, loss = useStopLoss, trail_points = useTrailStop, trail_offset = useTrailOffset)