Diese Strategie verwendet den Adaptive Zero Lag EMA-Indikator für die Trendbestimmung und Handelssignale.
Strategie Logik:
Berechnen Sie die Adaptive Zero Lag EMA mit den adaptiven Algorithmen Kosinus und IQ.
EMA ist die normale EMA, EC ist die adaptive Nullverzögerungs-EMA.
Es ist wichtig, dass die EU-Märkte in den letzten Jahren deutlich gestiegen sind, und es ist wichtig, dass die EU-Märkte in den kommenden Jahren weiter steigen.
Berechnen Sie die Fehlerkurve und setzen Sie den Schwellenwert, um falsche Signale zu filtern.
Verwenden Sie feste Punkte für den Stop-Loss und Gewinn für die Risikokontrolle.
Vorteile:
Die Adaptive EMA reduziert die Indikatorverzögerung erheblich.
Die Schwellenfilterung verbessert die Signalqualität und verhindert falsche Ausbrüche.
Einfache Stopps und Ziele sind leicht umzusetzen.
Risiken:
Adaptive EMA-Parameter können instabil werden.
Festgelegte Stopps/Ziele können sich nicht an die sich ändernden Marktbedingungen anpassen.
Keine Begrenzung der Verlustgröße, große Verlustrisiken.
Zusammenfassend lässt sich sagen, dass diese Strategie eine adaptive EMA für die Trendverfolgung verwendet, wodurch die Verzögerung in gewissem Maße reduziert wird.
/*backtest start: 2023-09-05 00:00:00 end: 2023-09-12 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 strategy(title="Adaptive Zero Lag EMA v2 (w/ Backtest Date Range)", shorttitle="AZLEMA", overlay = true, commission_type=strategy.commission.cash_per_contract, slippage = 5, pyramiding=1, calc_on_every_tick=true) src = input(title="Source", defval=close) secType = input(title="Security Type", options=["Forex", "Metal Spot", "Cryptocurrency","Custom"], defval="Forex") contracts = input(title="Custom # of Contracts", defval=1, step=1) limit = input(title="Max Lots", defval=100) Period = input(title="Period", defval = 20) adaptive = input(title="Adaptive Method", options=["Off", "Cos IFM", "I-Q IFM", "Average"], defval="Cos IFM") GainLimit = input(title="Gain Limit", defval = 8) Threshold = input(title="Threshold", defval=0.05, step=0.01) fixedSL = input(title="SL Points", defval=70) fixedTP = input(title="TP Points", defval=10) risk = input(title='Risk', defval=0.01, step=0.01) // === INPUT BACKTEST RANGE === FromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12) FromDay = input(defval = 1, title = "From Day", minval = 1, maxval = 31) FromYear = input(defval = 2019, title = "From Year", minval = 2015) ToMonth = input(defval = 1, title = "To Month", minval = 1, maxval = 12) ToDay = input(defval = 1, title = "To Day", minval = 1, maxval = 31) ToYear = input(defval = 9999, title = "To Year", minval = 2015) // === FUNCTION EXAMPLE === start = timestamp(FromYear, FromMonth, FromDay, 00, 00) // backtest start window finish = timestamp(ToYear, ToMonth, ToDay, 23, 59) // backtest finish window window() => true range = 50 //input(title="Max Period", defval=60, minval=8, maxval=100) PI = 3.14159265359 lenIQ = 0.0 lenC = 0.0 //############################################################################## //I-Q IFM //############################################################################## if(adaptive=="I-Q IFM" or adaptive=="Average") imult = 0.635 qmult = 0.338 inphase = 0.0 quadrature = 0.0 re = 0.0 im = 0.0 deltaIQ = 0.0 instIQ = 0.0 V = 0.0 P = src - src[7] inphase := 1.25*(P[4] - imult*P[2]) + imult*nz(inphase[3]) quadrature := P[2] - qmult*P + qmult*nz(quadrature[2]) re := 0.2*(inphase*inphase[1] + quadrature*quadrature[1]) + 0.8*nz(re[1]) im := 0.2*(inphase*quadrature[1] - inphase[1]*quadrature) + 0.8*nz(im[1]) if (re!= 0.0) deltaIQ := atan(im/re) for i=0 to range V := V + deltaIQ[i] if (V > 2*PI and instIQ == 0.0) instIQ := i if (instIQ == 0.0) instIQ := nz(instIQ[1]) lenIQ := 0.25*instIQ + 0.75*nz(lenIQ[1]) //############################################################################## //COSINE IFM //############################################################################## if(adaptive == "Cos IFM" or adaptive == "Average") s2 = 0.0 s3 = 0.0 deltaC = 0.0 instC = 0.0 v1 = 0.0 v2 = 0.0 v4 = 0.0 v1 := src - src[7] s2 := 0.2*(v1[1] + v1)*(v1[1] + v1) + 0.8*nz(s2[1]) s3 := 0.2*(v1[1] - v1)*(v1[1] - v1) + 0.8*nz(s3[1]) if (s2 != 0) v2 := sqrt(s3/s2) if (s3 != 0) deltaC := 2*atan(v2) for i = 0 to range v4 := v4 + deltaC[i] if (v4 > 2*PI and instC == 0.0) instC := i - 1 if (instC == 0.0) instC := instC[1] lenC := 0.25*instC + 0.75*nz(lenC[1]) if (adaptive == "Cos IFM") Period := round(lenC) if (adaptive == "I-Q IFM") Period := round(lenIQ) if (adaptive == "Average") Period := round((lenC + lenIQ)/2) //############################################################################## //ZERO LAG EXPONENTIAL MOVING AVERAGE //############################################################################## LeastError = 1000000.0 EC = 0.0 Gain = 0.0 EMA = 0.0 Error = 0.0 BestGain = 0.0 alpha =2/(Period + 1) EMA := alpha*src + (1-alpha)*nz(EMA[1]) for i = -GainLimit to GainLimit Gain := i/10 EC := alpha*(EMA + Gain*(src - nz(EC[1]))) + (1 - alpha)*nz(EC[1]) Error := src - EC if(abs(Error)<LeastError) LeastError := abs(Error) BestGain := Gain EC := alpha*(EMA + BestGain*(src - nz(EC[1]))) + (1-alpha)*nz(EC[1]) plot(EC, title="EC", color=orange, linewidth=2) plot(EMA, title="EMA", color=red, linewidth=2) //############################################################################## //Trade Logic & Risk Management //############################################################################## buy = crossover(EC,EMA) and 100*LeastError/src > Threshold sell = crossunder(EC,EMA) and 100*LeastError/src > Threshold secScaler = secType == "Forex" ? 100000 : secType == "Metal Spot" ? 100 : secType == "Cryptocurrency" ? 10000 : secType == "Custom" ? contracts : 0 strategy.initial_capital = 50000 balance = strategy.initial_capital + strategy.netprofit if (time>timestamp(2016, 1, 1 , 0, 0) and balance > 0) //LONG lots = ((risk * balance)/fixedSL)*secScaler lots := lots > limit * secScaler ? limit * secScaler : lots strategy.entry("BUY", strategy.long, oca_name="BUY", when=buy and window()) strategy.exit("B.Exit", "BUY", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP) //SHORT strategy.entry("SELL", strategy.short, oca_name="SELL",when=sell and window()) strategy.exit("S.Exit", "SELL", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)