Die Ressourcen sind geladen. Beförderung...

Neuronale Netzwerk-Super-Trend-Strategie

Schriftsteller:ChaoZhang, Datum: 14.9.2023
Tags:

Strategie Logik

Diese Strategie kombiniert ein neuronales Netzwerkmodell, einen RSI-Indikator und einen Super Trend-Indikator für den Handel.

Die Logik lautet:

  1. Erstellen Sie ein neuronales Netzwerkmodell mit Inputs, einschließlich Volumenänderung, Bollinger Bands, RSI usw.

  2. Das Netzwerk prognostiziert zukünftige Preisänderungsraten

  3. Berechnung der RSI-Werte und Kombination mit der prognostizierten Preisänderung

  4. Erstellen dynamischer Stop-Loss-Linien basierend auf dem RSI

  5. Gehen Sie kurz, wenn der Preis über den Stop-Loss-Wert steigt; gehen Sie lang, wenn der Preis unter den Stop-Down-Wert steigt

  6. Verwenden Sie das Trendbeurteilungsverfahren "Super Trend" für die Filtration

Die Strategie nutzt die Fähigkeit neuronaler Netzwerke, komplexe Daten zu modellieren, mit zusätzlicher Signalverifizierung von Indikatoren wie RSI und Super Trend, um die Genauigkeit zu verbessern und gleichzeitig das Risiko zu kontrollieren.

Vorteile

  • Neuronale Netzwerke modellieren multidimensionale Daten zur Ermittlung von Trends

  • RSI hält an, um Gewinne zu schützen, Super Trend hilft beim Urteilen

  • Vielfache Indikatoren kombinieren sich zur Verbesserung der Signalqualität

Risiken

  • Benötigt große Datensätze für das Neuronalnetz-Training

  • Notwendige Feinabstimmung der Parameter RSI und Super Trend

  • Leistung hängt von Modellvorhersagen ab, Unsicherheiten bestehen

Zusammenfassung

Diese Strategie kombiniert maschinelles Lernen mit traditionellen Techniken zur Effizienz mit Risikokontrollen.


/*backtest
start: 2023-08-14 00:00:00
end: 2023-09-13 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
//ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/
//it only work for BTC as the ANN is trained for this data only
//super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/
// Strategy version created for @che_trader
strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true)
qty = input(10000, "Buy quantity")

testStartYear = input(2019, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testStartHour = input(0, "Backtest Start Hour")
testStartMin = input(0, "Backtest Start Minute")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin)
testStopYear = input(2099, "Backtest Stop Year")
testStopMonth = input(1, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => true

max_bars_back = (21)
src = close[0]

// Essential Functions

// Highest - Lowest Functions ( All efforts goes to RicardoSantos )

f_highest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] >= _value ? _src[_i] : _value
    _return = _value

f_lowest(_src, _length)=>
    _adjusted_length = _length < 1 ? 1 : _length
    _value = _src
    for _i = 0 to (_adjusted_length-1)
        _value := _src[_i] <= _value ? _src[_i] : _value
    _return = _value

// Function Sum  

f_sum(_src , _length) => 

    _output  = 0.00 
    
    _length_adjusted = _length < 1 ? 1 : _length
    
    for i = 0 to _length_adjusted-1
        _output := _output + _src[i]


// Unlocked Exponential Moving Average Function

f_ema(_src, _length)=>
    _length_adjusted = _length < 1 ? 1 : _length
    _multiplier = 2 / (_length_adjusted + 1)
    _return  = 0.00
    _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]


// Unlocked Moving Average Function 

f_sma(_src, _length)=>
    
    _output = 0.00
    _length_adjusted = _length < 0 ? 0 : _length
    w = cum(_src)

    _output:= (w - w[_length_adjusted]) / _length_adjusted
   
    _output    


// Definition : Function Bollinger Bands

Multiplier = 2 
_length_bb = 20


e_r = f_sma(src,_length_bb)


// Function Standard Deviation : 

f_stdev(_src,_length) =>

    float _output = na 
    _length_adjusted = _length < 2 ? 2 : _length
    _avg  = f_ema(_src , _length_adjusted)
    evar  = (_src - _avg) * (_src - _avg)
    evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
    
    _output := sqrt(evar2)


std_r = f_stdev(src , _length_bb )


upband = e_r + (Multiplier * std_r)  // Upband
dnband = e_r - (Multiplier * std_r)  // Lowband
basis  = e_r                         // Midband

// Function : RSI


length = input(14, minval=1) // 


f_rma(_src, _length) =>
    _length_adjusted = _length < 1 ? 1 : _length
    alpha = _length_adjusted
    sum = 0.0
    sum := (_src + (alpha - 1) * nz(sum[1])) / alpha



f_rsi(_src, _length) => 

    _output = 0.00 
    _length_adjusted = _length < 0 ? 0 : _length

    u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
    d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
    rs = f_rma(u, _length) / f_rma(d, _length)
    res = 100 - 100 / (1 + rs)
    res


_rsi = f_rsi(src, length)


// MACD 

_fastLength   = input(12 , title = "MACD Fast Length")
_slowlength   = input(26 , title = "MACD Slow Length")
_signalLength = input(9  , title = "MACD Signal Length")


_macd   = f_ema(close, _fastLength) - f_ema(close, _slowlength)
_signal = f_ema(_macd, _signalLength)
	   
_macdhist = _macd - _signal


// Inputs on Tangent Function : 

tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) 


// Deep Learning Activation Function (Tanh) : 

ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))


// DEEP LEARNING 

// INPUTS : 

input_1 = tangentdiff(volume)
input_2 = tangentdiff(dnband)
input_3 = tangentdiff(e_r)
input_4 = tangentdiff(upband)
input_5 = tangentdiff(_rsi)
input_6 = tangentdiff(_macdhist)

// LAYERS : 

// Input Layers 

n_0 = ActivationFunctionTanh(input_1 + 0)   
n_1 = ActivationFunctionTanh(input_2 + 0) 
n_2 = ActivationFunctionTanh(input_3 + 0) 
n_3 = ActivationFunctionTanh(input_4 + 0) 
n_4 = ActivationFunctionTanh(input_5 + 0)
n_5 = ActivationFunctionTanh(input_6 + 0)


// Hidden Layers 

n_6   = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 +  0.221093) 
n_7   = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 +  0.019450 * n_2 +  0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) 
n_8   = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 +  1.633836 * n_3 +  6.099666 * n_4 +  3.509443 * n_5 + -4.384254) 
n_9   = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) 
n_10  = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 +  3.655614 * n_2 +  1.051512 * n_3 + -2.763198 * n_4 +  6.062295 * n_5 + -6.367982) 
n_11  = ActivationFunctionTanh(  1.246882 * n_0 + -1.993206 * n_1 +  1.599518 * n_2 +  1.871801 * n_3 +  0.294797 * n_4 + -0.607512 * n_5 + -3.092821) 
n_12  = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) 
n_13  = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) 


// Output Layer 

_output  = ActivationFunctionTanh(2.588784 * n_6  + 0.100819 * n_7  + -5.305373 * n_8  + 1.167093 * n_9  + 
                                  3.770143 * n_10 + 1.269190 * n_11 +  2.090862 * n_12 + 0.839791 * n_13 + -0.196165)

_chg_src = tangentdiff(src) * 100

_seed = (_output - _chg_src)
// BEGIN ACTUAL STRATEGY
length1 = input(title="RSI Period", type=input.integer, defval=21)
mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0)
wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false)
showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true)

srsi = mult* rsi(_seed ,length1)

longStop = hl2 - srsi
longStopPrev = nz(longStop[1], longStop)
longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop

shortStop = hl2 + srsi
shortStopPrev = nz(shortStop[1], shortStop)
shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop

dir = 1
dir := nz(dir[1], dir)
dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir

longColor = color.green
shortColor = color.red

plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor)
buySignal = dir == 1 and dir[1] == -1
plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0)
plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0)

plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor)
sellSignal = dir == -1 and dir[1] == 1
plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0)
plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0)





if testPeriod() and buySignal
    strategy.entry("Long",strategy.long)

if testPeriod() and sellSignal
    strategy.entry("Short",strategy.short)

Mehr