The resource loading... loading...

Adaptive Zero Lag EMA Trading Strategy

Author: ChaoZhang, Date: 2023-09-13 14:22:55
Tags:

This strategy uses the Adaptive Zero Lag EMA indicator for trend determination and trade signals. The adaptive EMA dynamically tunes parameters to eliminate lag. It aims for trend following.

Strategy Logic:

  1. Calculate Adaptive Zero Lag EMA with cosine and I-Q adaptive algorithms.

  2. EMA is normal EMA, EC is adaptive zero lag EMA.

  3. Go long when EC crosses above EMA, and short when crossing below.

  4. Compute error curve and set threshold to filter false signals.

  5. Use fixed points for stop loss and take profit for risk control.

Advantages:

  1. Adaptive EMA significantly reduces indicator lag.

  2. Threshold filtering improves signal quality and avoids false breakouts.

  3. Simple stops and targets are easy to implement.

Risks:

  1. Adaptive EMA parameters can become unstable.

  2. Fixed stops/targets fail to adapt to changing market conditions.

  3. No limit on loss size, risks large losing trades.

In summary, this strategy uses adaptive EMA for trend following, reducing lag to some extent. But parameter stability and optimized stops are needed to control risks.


/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 2h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=3
strategy(title="Adaptive Zero Lag EMA v2 (w/ Backtest Date Range)", shorttitle="AZLEMA", overlay = true,  commission_type=strategy.commission.cash_per_contract, slippage = 5, pyramiding=1, calc_on_every_tick=true)

src = input(title="Source",  defval=close)
secType = input(title="Security Type", options=["Forex", "Metal Spot", "Cryptocurrency","Custom"], defval="Forex")
contracts = input(title="Custom # of Contracts", defval=1, step=1)
limit = input(title="Max Lots",  defval=100)
Period = input(title="Period",  defval = 20)
adaptive = input(title="Adaptive Method", options=["Off", "Cos IFM", "I-Q IFM", "Average"], defval="Cos IFM")
GainLimit = input(title="Gain Limit",  defval = 8)
Threshold = input(title="Threshold",  defval=0.05, step=0.01)
fixedSL = input(title="SL Points", defval=70)
fixedTP = input(title="TP Points", defval=10)
risk = input(title='Risk', defval=0.01, step=0.01)

// === INPUT BACKTEST RANGE ===
FromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12)
FromDay   = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
FromYear  = input(defval = 2019, title = "From Year", minval = 2015)
ToMonth   = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
ToDay     = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
ToYear    = input(defval = 9999, title = "To Year", minval = 2015)

// === FUNCTION EXAMPLE ===
start     = timestamp(FromYear, FromMonth, FromDay, 00, 00)  // backtest start window
finish    = timestamp(ToYear, ToMonth, ToDay, 23, 59)        // backtest finish window
window()  => true

range = 50 //input(title="Max Period",  defval=60, minval=8, maxval=100)

PI = 3.14159265359
lenIQ = 0.0
lenC = 0.0

//##############################################################################
//I-Q IFM
//##############################################################################
if(adaptive=="I-Q IFM" or adaptive=="Average")
    imult = 0.635
    qmult = 0.338
    inphase = 0.0
    quadrature = 0.0
    re = 0.0
    im = 0.0
    deltaIQ = 0.0
    instIQ = 0.0
    V = 0.0
    
    P = src - src[7]
    inphase := 1.25*(P[4] - imult*P[2]) + imult*nz(inphase[3])
    quadrature := P[2] - qmult*P + qmult*nz(quadrature[2])
    re := 0.2*(inphase*inphase[1] + quadrature*quadrature[1]) + 0.8*nz(re[1])
    im := 0.2*(inphase*quadrature[1] - inphase[1]*quadrature) + 0.8*nz(im[1])
    if (re!= 0.0)
        deltaIQ := atan(im/re)
    for i=0 to range
        V := V + deltaIQ[i]
        if (V > 2*PI and instIQ == 0.0)
            instIQ := i
    if (instIQ == 0.0)
        instIQ := nz(instIQ[1])
    lenIQ := 0.25*instIQ + 0.75*nz(lenIQ[1])

//##############################################################################
//COSINE IFM
//##############################################################################
if(adaptive == "Cos IFM" or adaptive == "Average")
    s2 = 0.0
    s3 = 0.0
    deltaC = 0.0
    instC = 0.0
    v1 = 0.0
    v2 = 0.0
    v4 = 0.0
    
    v1 := src - src[7]
    s2 := 0.2*(v1[1] + v1)*(v1[1] + v1) + 0.8*nz(s2[1])
    s3 := 0.2*(v1[1] - v1)*(v1[1] - v1) + 0.8*nz(s3[1])
    if (s2 != 0)
        v2 := sqrt(s3/s2)
    if (s3 != 0)
        deltaC := 2*atan(v2)
    for i = 0 to range
        v4 := v4 + deltaC[i]
        if (v4 > 2*PI and instC == 0.0)
            instC := i - 1
    if (instC == 0.0)
        instC := instC[1]
    lenC := 0.25*instC + 0.75*nz(lenC[1])

if (adaptive == "Cos IFM")
    Period := round(lenC)
if (adaptive == "I-Q IFM")
    Period := round(lenIQ)
if (adaptive == "Average")
    Period := round((lenC + lenIQ)/2)

//##############################################################################
//ZERO LAG EXPONENTIAL MOVING AVERAGE
//##############################################################################
LeastError = 1000000.0
EC = 0.0
Gain = 0.0
EMA = 0.0
Error = 0.0
BestGain = 0.0

alpha =2/(Period + 1)
EMA := alpha*src + (1-alpha)*nz(EMA[1])

for i = -GainLimit to GainLimit
    Gain := i/10
    EC := alpha*(EMA + Gain*(src - nz(EC[1]))) + (1 - alpha)*nz(EC[1])
    Error := src - EC
    if(abs(Error)<LeastError)
        LeastError := abs(Error)
        BestGain := Gain

EC := alpha*(EMA + BestGain*(src - nz(EC[1]))) + (1-alpha)*nz(EC[1])

plot(EC, title="EC", color=orange, linewidth=2)
plot(EMA, title="EMA", color=red, linewidth=2)

//##############################################################################
//Trade Logic & Risk Management
//##############################################################################
buy = crossover(EC,EMA) and 100*LeastError/src > Threshold
sell = crossunder(EC,EMA) and 100*LeastError/src > Threshold

secScaler = secType == "Forex" ? 100000 : secType == "Metal Spot" ? 100 : secType == "Cryptocurrency" ? 10000 : secType == "Custom" ? contracts : 0
strategy.initial_capital = 50000
balance = strategy.initial_capital + strategy.netprofit
if (time>timestamp(2016, 1, 1 , 0, 0) and balance > 0)
    //LONG
    lots = ((risk * balance)/fixedSL)*secScaler
    lots := lots > limit * secScaler ? limit * secScaler : lots
    strategy.entry("BUY", strategy.long,  oca_name="BUY",  when=buy and window())
    strategy.exit("B.Exit", "BUY", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)
    //SHORT
    strategy.entry("SELL", strategy.short,  oca_name="SELL",when=sell and window())
    strategy.exit("S.Exit", "SELL", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)


More