This strategy is based on the Bollinger Bands indicator, combined with moving averages and the ATR technical indicator, to implement a short-term breakout system. The strategy calculates the relative percentage position of prices within the Bollinger Bands channel to judge overbought and oversold situations, combined with new highs and lows breakouts to generate trading signals.
This strategy uses Bollinger Bands channel to judge market volatility, with channel width determined by standard deviation. Buy signals are generated when prices break below the lower band, and sell signals when prices break above the upper band. Moving averages can smooth out Bollinger fluctuations and reduce false breakouts. ATR indicator combines with trailing stop loss to fix stop loss scale. New highs/lows help avoid chasing tops and limit downside. Yearly highs/lows filter out bigger timeframe consolidation. In summary, this strategy combines various technical analysis tools to judge market rhythm and entry timing.
This strategy effectively combines Bollinger percentage bands, moving averages, ATR indicator, new highs/lows and yearly highs/lows to construct a relatively strict and efficient short-term breakout trading system. Its outstanding advantage lies in using various tools to reduce noise and identify true trend signals. Of course the strategy also faces some parameter tuning difficulties and missed opportunities under strict conditions. Overall it represents a unique trading style and high-efficiency Bollinger breakout strategy that warrants further research and validation on real trading data.
/*backtest start: 2022-12-04 00:00:00 end: 2023-12-10 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © HeWhoMustNotBeNamed //@version=4 strategy("Bollinger %B Candles Strategy", overlay=false, initial_capital = 1000, default_qty_type = strategy.percent_of_equity, default_qty_value = 100, commission_type = strategy.commission.percent, pyramiding = 1, commission_value = 0.01, calc_on_order_fills = true) BBLength = input(100, minval=1, step=1) StdDev = 10 useMovingAverage = input(true) MAType = input(title="Moving Average Type", defval="rma", options=["ema", "sma", "hma", "rma", "vwma", "wma"]) lookbackPeriod = input(22, minval=10, step=10) colorByPreviousClose = input(true) AtrMAType = input(title="Moving Average Type", defval="hma", options=["ema", "sma", "hma", "rma", "vwma", "wma"]) AtrLength = input(10) AtrMult = input(4) wicks = input(false) considerYearlyHighLow = input(false) considerNewLongTermHighLows = input(false) shortHighLowPeriod = 100 longHighLowPeriod = 200 tradeDirection = input(title="Trade Direction", defval=strategy.direction.all, options=[strategy.direction.all, strategy.direction.long, strategy.direction.short]) backtestYears = input(10, minval=1, step=1) //////////////////////////////////// Calculate new high low condition ////////////////////////////////////////////////// f_calculateNewHighLows(shortHighLowPeriod, longHighLowPeriod, considerNewLongTermHighLows)=> newHigh = highest(shortHighLowPeriod) == highest(longHighLowPeriod) or not considerNewLongTermHighLows newLow = lowest(shortHighLowPeriod) == lowest(longHighLowPeriod) or not considerNewLongTermHighLows [newHigh,newLow] //////////////////////////////////// Calculate Yearly High Low ////////////////////////////////////////////////// f_getYearlyHighLowCondition(considerYearlyHighLow)=> yhigh = security(syminfo.tickerid, '12M', high[1]) ylow = security(syminfo.tickerid, '12M', low[1]) yhighlast = yhigh[365] ylowlast = ylow[365] yhighllast = yhigh[2 * 365] ylowllast = ylow[2 * 365] yearlyTrendUp = na(yhigh)? true : na(yhighlast)? close > yhigh : na(yhighllast)? close > max(yhigh,yhighlast) : close > max(yhigh, min(yhighlast, yhighllast)) yearlyHighCondition = ( (na(yhigh) or na(yhighlast) ? true : (yhigh > yhighlast) ) and ( na(yhigh) or na(yhighllast) ? true : (yhigh > yhighllast))) or yearlyTrendUp or not considerYearlyHighLow yearlyTrendDown = na(ylow)? true : na(ylowlast)? close < ylow : na(ylowllast)? close < min(ylow,ylowlast) : close < min(ylow, max(ylowlast, ylowllast)) yearlyLowCondition = ( (na(ylow) or na(ylowlast) ? true : (ylow < ylowlast) ) and ( na(ylow) or na(ylowllast) ? true : (ylow < ylowllast))) or yearlyTrendDown or not considerYearlyHighLow label_x = time+(60*60*24*1000*1) [yearlyHighCondition,yearlyLowCondition] f_getMovingAverage(source, MAType, length)=> ma = sma(source, length) if(MAType == "ema") ma := ema(source,length) if(MAType == "hma") ma := hma(source,length) if(MAType == "rma") ma := rma(source,length) if(MAType == "vwma") ma := vwma(source,length) if(MAType == "wma") ma := wma(source,length) ma inDateRange = true [yearlyHighCondition,yearlyLowCondition] = f_getYearlyHighLowCondition(considerYearlyHighLow) [newHighS,newLowS] = f_calculateNewHighLows(shortHighLowPeriod, longHighLowPeriod, considerNewLongTermHighLows) [middleclose, upperclose, lowerclose] = bb(close, BBLength, StdDev) [middleopen, upperopen, loweropen] = bb(open, BBLength, StdDev) [middlehigh, upperhigh, lowerhigh] = bb(high, BBLength, StdDev) [middlelow, upperlow, lowerlow] = bb(low, BBLength, StdDev) percentBClose = (close - lowerclose)*100/(upperclose-lowerclose) percentBOpen = (open - loweropen)*100/(upperopen-loweropen) percentBHigh = (high - lowerhigh)*100/(upperhigh-lowerhigh) percentBLow = (low - lowerlow)*100/(upperlow-lowerlow) percentBMAClose = f_getMovingAverage(percentBClose, MAType, lookbackPeriod) percentBMAOpen = f_getMovingAverage(percentBOpen, MAType, lookbackPeriod) percentBMAHigh = f_getMovingAverage(percentBHigh, MAType, lookbackPeriod) percentBMALow = f_getMovingAverage(percentBLow, MAType, lookbackPeriod) newOpen = useMovingAverage? percentBMAOpen : percentBOpen newClose = useMovingAverage? percentBMAClose : percentBClose newHigh = useMovingAverage? percentBMAHigh : percentBHigh newLow = useMovingAverage? percentBMALow : percentBLow truerange = max(newHigh, newClose[1]) - min(newLow, newClose[1]) averagetruerange = f_getMovingAverage(truerange, AtrMAType, AtrLength) atr = averagetruerange * AtrMult longStop = newClose - atr longStopPrev = nz(longStop[1], longStop) longStop := (wicks ? newLow[1] : newClose[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop shortStop = newClose + atr shortStopPrev = nz(shortStop[1], shortStop) shortStop := (wicks ? newHigh[1] : newClose[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop dir = 1 dir := nz(dir[1], dir) dir := dir == -1 and (wicks ? newHigh : newClose) > shortStopPrev ? 1 : dir == 1 and (wicks ? newLow : newClose) < longStopPrev ? -1 : dir trailingStop = dir == 1? longStop : shortStop candleColor = colorByPreviousClose ? (newClose[1] < newClose ? color.green : newClose[1] > newClose ? color.red : color.silver) : (newOpen < newClose ? color.green : newOpen > newClose ? color.red : color.silver) plotcandle(newOpen, newHigh, newLow, newClose, title='PercentBCandle', color = candleColor, wickcolor=candleColor) plot(trailingStop, title="TrailingStop", style=plot.style_linebr, linewidth=1, color= dir == 1 ? color.green : color.red) buyCondition = dir==1 and yearlyHighCondition and newHighS exitBuyCondition = dir == -1 sellCondition = dir == -1 and yearlyLowCondition and newLowS exitSellCondition = dir == 1 strategy.risk.allow_entry_in(tradeDirection) barcolor(buyCondition? color.lime : sellCondition ? color.orange : color.silver) strategy.entry("Buy", strategy.long, when=buyCondition and inDateRange, oca_name="oca_buy") strategy.close("Buy", when=exitBuyCondition) strategy.entry("Sell", strategy.short, when=sellCondition and inDateRange, oca_name="oca_sell") strategy.close("Sell", when=exitSellCondition)