Multi-Indicator Decision Tree Strategy: IMACD, EMA and Ichimoku


Created on: 2024-01-22 11:25:56 Modified on: 2024-01-22 11:25:56
Copy: 0 Number of hits: 341
1
Follow
1105
Followers

Multi-Indicator Decision Tree Strategy: IMACD, EMA and Ichimoku

Overview

This strategy integrates multiple technical indicators like IMACD, EMA and Ichimoku to build a comprehensive decision tree model for generating trading signals.

Strategy Logic

  1. IMACD: Enhanced MACD to better capture market trends via ImpulseMACD and ImpulseHisto
  2. Ichimoku: Plot conversion line, base line, leading span A, leading span B to identify support and resistance levels
  3. EMA 40: Assist in determining trend direction
  4. Long/short signals are triggered based on specific conditions between IMACD, cloud components and EMA 40

Long signal: When IMACD is a specific color and EMA 40 is above cloud top, go long

Short signal: When IMACD is red and EMA 40 is below cloud bottom, go short

Advantage Analysis

  1. Combination of multiple indicators improves accuracy of trend judgment
  2. Clear classification of decision tree model generates unambiguous trading signals
  3. Flexible EMA length for better assistance in trend determination
  4. Identify support and resistance levels better with cloud and trend indicators

Risk Analysis

  1. Complex parameter tuning with multiple indicators
  2. False signals may be triggered by improper EMA length
  3. Difficulty in monitoring many indicators simultaneously

Risk Solutions: Optimize parameter settings, adjust EMA length, simplify workflow.

Optimization Directions

  1. Enhance stability by optimizing parameters
  2. Limit losses with stop loss strategies
  3. Improve signal quality by backtesting with huge data
  4. Build adaptive decision tree model with machine learning

Summary

This strategy identifies trends using multiple indicators to construct a decision tree model for generating trading signals. Pros are high-quality and accurate signals. Consists room for progressive optimization. Requires focus on parameter tuning and stop loss to control risks for long-term steady returns.

Strategy source code
                
                    /*backtest
start: 2024-01-14 00:00:00
end: 2024-01-21 00:00:00
period: 30m
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
strategy("Decision Tree Strategy: IMACD, EMA and Ichimoku [cryptoonchain]", overlay=true)

lengthMA = input(34, title="Length MA")
lengthSignal = input(9, title="Length Signal")
conversionPeriods = input.int(9, minval=1, title="Conversion Line Length")
basePeriods = input.int(26, minval=1, title="Base Line Length")
laggingSpan2Periods = input.int(52, minval=1, title="Leading Span B Length")
displacement = input.int(26, minval=1, title="Lagging Span")
emaLength = input(40, title="EMA Length")  // Added user-configurable EMA length

calc_smma(src, len) =>
    smma = float(na)
    smma := na(smma[1]) ? ta.sma(src, len) : (smma[1] * (len - 1) + src) / len
    smma

calc_zlema(src, length) =>
    ema1 = ta.ema(src, length)
    ema2 = ta.ema(ema1, length)
    d = ema1 - ema2
    ema1 + d

src = ohlc4
hi = calc_smma(high, lengthMA)
lo = calc_smma(low, lengthMA)
mi = calc_zlema(src, lengthMA)

md = (mi > hi) ? (mi - hi) : (mi < lo) ? (mi - lo) : 0
sb = ta.sma(md, lengthSignal)
sh = md - sb
mdc = src > mi ? (src > hi ? color.rgb(128, 255, 0, 26) : color.green) : (src < lo ? color.red : color.orange)

colorCondition = color.rgb(128, 255, 0, 26)

conversionLine = math.avg(ta.lowest(conversionPeriods), ta.highest(conversionPeriods))
baseLine = math.avg(ta.lowest(basePeriods), ta.highest(basePeriods))
leadLine1 = math.avg(conversionLine, baseLine)
leadLine2 = math.avg(ta.lowest(laggingSpan2Periods), ta.highest(laggingSpan2Periods))

// Use user-configurable length for EMA
ema40 = ta.ema(close, emaLength)

ebc = input(false, title="Enable bar colors")
barcolor(ebc ? mdc : na)

conversionLinePlot = plot(conversionLine, color=#2962FF, title="Conversion Line", display=display.none)
baseLinePlot = plot(baseLine, color=#B71C1C, title="Base Line", display=display.none)
laggingSpanPlot = plot(close, offset=-displacement + 1, color=#43A047, title="Lagging Span", display=display.none)
leadLine1Plot = plot(leadLine1, offset=displacement - 1, color=#A5D6A7, title="Leading Span A", display=display.none)
leadLine2Plot = plot(leadLine2, offset=displacement - 1, color=#EF9A9A, title="Leading Span B", display=display.none)
kumoCloudUpperLinePlot = plot(leadLine1 > leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Upper Line", display=display.none)
kumoCloudLowerLinePlot = plot(leadLine1 < leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Lower Line", display=display.none)
fill(kumoCloudUpperLinePlot, kumoCloudLowerLinePlot, color=leadLine1 > leadLine2 ? color.green : color.red)

a = (leadLine1 > leadLine2 ? leadLine1 : leadLine2) 
b = (leadLine1 < leadLine2 ? leadLine1 : leadLine2)  

if mdc == colorCondition and ema40 > a[displacement - 1]
    strategy.entry("Long", strategy.long)

if mdc == color.red and ema40 < b[displacement - 1]
    strategy.entry("Short", strategy.short)

                
            
More content