Esta estrategia combina un modelo de red neuronal, el indicador RSI y el indicador Super Trend para el comercio.
La lógica es:
Construir un modelo de red neuronal con entradas que incluyen el cambio de volumen, bandas de Bollinger, RSI, etc.
La red predice la tasa futura de cambio de precios
Calcular los valores del RSI y combinarlos con el cambio de precio previsto
Generar líneas de stop loss dinámicas basadas en el RSI
Ir corto cuando el precio se rompe por encima de la parada de pérdida; ir largo cuando el precio se rompe por debajo de la parada de bajada
Utilice el juicio de tendencia de Super Trend para filtrar
La estrategia aprovecha la capacidad de las redes neuronales para modelar datos complejos, con verificación de señales adicionales de indicadores como RSI y Super Trend para mejorar la precisión mientras se controla el riesgo.
Las redes neuronales modelan datos multidimensionales para determinar tendencias
El RSI se detiene para proteger las ganancias, Super Trend ayuda al juicio
La combinación de varios indicadores mejora la calidad de la señal
Requiere grandes conjuntos de datos para el entrenamiento de redes neuronales
Se requiere un ajuste fino de los parámetros RSI y Super Trend
El rendimiento depende de las predicciones del modelo, existen incertidumbres
Esta estrategia combina el aprendizaje automático con las técnicas tradicionales de eficiencia con controles de riesgos.
/*backtest start: 2023-08-14 00:00:00 end: 2023-09-13 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/ //it only work for BTC as the ANN is trained for this data only //super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/ // Strategy version created for @che_trader strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true) qty = input(10000, "Buy quantity") testStartYear = input(2019, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testStartHour = input(0, "Backtest Start Hour") testStartMin = input(0, "Backtest Start Minute") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin) testStopYear = input(2099, "Backtest Stop Year") testStopMonth = input(1, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) testPeriod() => true max_bars_back = (21) src = close[0] // Essential Functions // Highest - Lowest Functions ( All efforts goes to RicardoSantos ) f_highest(_src, _length)=> _adjusted_length = _length < 1 ? 1 : _length _value = _src for _i = 0 to (_adjusted_length-1) _value := _src[_i] >= _value ? _src[_i] : _value _return = _value f_lowest(_src, _length)=> _adjusted_length = _length < 1 ? 1 : _length _value = _src for _i = 0 to (_adjusted_length-1) _value := _src[_i] <= _value ? _src[_i] : _value _return = _value // Function Sum f_sum(_src , _length) => _output = 0.00 _length_adjusted = _length < 1 ? 1 : _length for i = 0 to _length_adjusted-1 _output := _output + _src[i] // Unlocked Exponential Moving Average Function f_ema(_src, _length)=> _length_adjusted = _length < 1 ? 1 : _length _multiplier = 2 / (_length_adjusted + 1) _return = 0.00 _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1] // Unlocked Moving Average Function f_sma(_src, _length)=> _output = 0.00 _length_adjusted = _length < 0 ? 0 : _length w = cum(_src) _output:= (w - w[_length_adjusted]) / _length_adjusted _output // Definition : Function Bollinger Bands Multiplier = 2 _length_bb = 20 e_r = f_sma(src,_length_bb) // Function Standard Deviation : f_stdev(_src,_length) => float _output = na _length_adjusted = _length < 2 ? 2 : _length _avg = f_ema(_src , _length_adjusted) evar = (_src - _avg) * (_src - _avg) evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted) _output := sqrt(evar2) std_r = f_stdev(src , _length_bb ) upband = e_r + (Multiplier * std_r) // Upband dnband = e_r - (Multiplier * std_r) // Lowband basis = e_r // Midband // Function : RSI length = input(14, minval=1) // f_rma(_src, _length) => _length_adjusted = _length < 1 ? 1 : _length alpha = _length_adjusted sum = 0.0 sum := (_src + (alpha - 1) * nz(sum[1])) / alpha f_rsi(_src, _length) => _output = 0.00 _length_adjusted = _length < 0 ? 0 : _length u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change rs = f_rma(u, _length) / f_rma(d, _length) res = 100 - 100 / (1 + rs) res _rsi = f_rsi(src, length) // MACD _fastLength = input(12 , title = "MACD Fast Length") _slowlength = input(26 , title = "MACD Slow Length") _signalLength = input(9 , title = "MACD Signal Length") _macd = f_ema(close, _fastLength) - f_ema(close, _slowlength) _signal = f_ema(_macd, _signalLength) _macdhist = _macd - _signal // Inputs on Tangent Function : tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) // Deep Learning Activation Function (Tanh) : ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v)) // DEEP LEARNING // INPUTS : input_1 = tangentdiff(volume) input_2 = tangentdiff(dnband) input_3 = tangentdiff(e_r) input_4 = tangentdiff(upband) input_5 = tangentdiff(_rsi) input_6 = tangentdiff(_macdhist) // LAYERS : // Input Layers n_0 = ActivationFunctionTanh(input_1 + 0) n_1 = ActivationFunctionTanh(input_2 + 0) n_2 = ActivationFunctionTanh(input_3 + 0) n_3 = ActivationFunctionTanh(input_4 + 0) n_4 = ActivationFunctionTanh(input_5 + 0) n_5 = ActivationFunctionTanh(input_6 + 0) // Hidden Layers n_6 = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 + 0.221093) n_7 = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 + 0.019450 * n_2 + 0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) n_8 = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 + 1.633836 * n_3 + 6.099666 * n_4 + 3.509443 * n_5 + -4.384254) n_9 = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) n_10 = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 + 3.655614 * n_2 + 1.051512 * n_3 + -2.763198 * n_4 + 6.062295 * n_5 + -6.367982) n_11 = ActivationFunctionTanh( 1.246882 * n_0 + -1.993206 * n_1 + 1.599518 * n_2 + 1.871801 * n_3 + 0.294797 * n_4 + -0.607512 * n_5 + -3.092821) n_12 = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) n_13 = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) // Output Layer _output = ActivationFunctionTanh(2.588784 * n_6 + 0.100819 * n_7 + -5.305373 * n_8 + 1.167093 * n_9 + 3.770143 * n_10 + 1.269190 * n_11 + 2.090862 * n_12 + 0.839791 * n_13 + -0.196165) _chg_src = tangentdiff(src) * 100 _seed = (_output - _chg_src) // BEGIN ACTUAL STRATEGY length1 = input(title="RSI Period", type=input.integer, defval=21) mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0) wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false) showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true) srsi = mult* rsi(_seed ,length1) longStop = hl2 - srsi longStopPrev = nz(longStop[1], longStop) longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop shortStop = hl2 + srsi shortStopPrev = nz(shortStop[1], shortStop) shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop dir = 1 dir := nz(dir[1], dir) dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir longColor = color.green shortColor = color.red plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor) buySignal = dir == 1 and dir[1] == -1 plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0) plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0) plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor) sellSignal = dir == -1 and dir[1] == 1 plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0) plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0) if testPeriod() and buySignal strategy.entry("Long",strategy.long) if testPeriod() and sellSignal strategy.entry("Short",strategy.short)