Esta estrategia utiliza el indicador de desviación estándar ponderada combinado con el promedio móvil para implementar la negociación de tendencias en criptomonedas. Calcula un canal de precios de desviación estándar ponderada basado en los precios de cierre y los volúmenes durante un cierto período. Cuando el precio rompe el canal superior o inferior, se toman posiciones largas o cortas. Las condiciones de stop loss y take profit también se establecen para limitar las pérdidas por operación.
El código define dos funciones personalizadas para calcular la desviación estándar ponderada de las series de tiempo y matrices.
Esto nos da un canal centrado en el precio promedio ponderado, con los límites superior e inferior a una desviación estándar de distancia.
La mayor ventaja de esta estrategia es la combinación de promedio móvil y análisis de volatilidad. El MA juzga la dirección de la tendencia del mercado mientras que el rango SD define una banda sensata - ambos se verifican entre sí para una mayor confiabilidad.
Los puntos de stop loss y take profit ayudan aún más a operar con la tendencia y evitar pérdidas excesivas en reversiones.
El principal riesgo es el de las violentas oscilaciones del mercado, lo que puede hacer que el canal SD oscile también de forma salvaje, lo que dificulta los juicios.
El remedio es suavizar los parámetros y la configuración del período adecuadamente.
Esta estrategia emplea con éxito el indicador de desviación estándar ponderado junto con MA para rastrear las tendencias de las criptomonedas. Las configuraciones razonables de stop loss / take profit también ayudan al ritmo del mercado comercial y evitan pérdidas de reversión excesivas.
/*backtest start: 2023-11-16 00:00:00 end: 2023-11-23 00:00:00 period: 45m basePeriod: 5m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © rumpypumpydumpy © cache_that_pass //@version=4 strategy("[cache_that_pass] 1m 15m Function - Weighted Standard Deviation", overlay=true, pyramiding=0, default_qty_type=strategy.percent_of_equity, default_qty_value=20, initial_capital=10000, commission_type=strategy.commission.percent, commission_value=0.075) f_weighted_sd_from_series(_src, _weight, _n) => //{ // @function: Calculates weighted mean, variance, standard deviation, MSE and RMSE from time series variables // @parameters: // _src: time series variable of sample values // _weight: time series of corresponding weight values. // _n : number of samples _xw = _src * _weight _sum_weight = sum(_weight, _n) _mean = sum(_xw, _n) / _sum_weight float _sqerror_sum = 0 int _nonzero_n = 0 for _i = 0 to _n - 1 _sqerror_sum := _sqerror_sum + pow(_mean - _src[_i], 2) * _weight[_i] _nonzero_n := _weight[_i] != 0 ? _nonzero_n + 1 : _nonzero_n _variance = _sqerror_sum / ((_nonzero_n - 1) * _sum_weight / _nonzero_n) _dev = sqrt(_variance) _mse = _sqerror_sum / _sum_weight _rmse = sqrt(_mse) [_mean, _variance, _dev, _mse, _rmse] //} // ----------------------------------------------------------------------------- f_weighted_sd_from_arrays(_a_src, _a_weight, _n) => //{ // @function: Calculates weighted mean, variance, standard deviation, MSE and RMSE from arrays // Expects index 0 of the arrays to be the most recent sample and weight values! // @parameters: // _a_src: array of sample values // _a_weight: array of corresponding weight values. // _n : number of samples float _mean = na, float _variance = na, float _dev = na, float _mse = na float _rmse = na, float _sqerror_sum = na, float _sum_weight = na float[] _a_xw = array.new_float(_n) int _nonzero_n = 0 if array.size(_a_src) >= _n _sum_weight := 0 _sqerror_sum := 0 for _i = 0 to _n - 1 array.set(_a_xw, _i, array.get(_a_src, _i) * array.get(_a_weight, _i)) _sum_weight := _sum_weight + array.get(_a_weight, _i) _nonzero_n := array.get(_a_weight, _i) != 0 ? _nonzero_n + 1 : _nonzero_n _mean := array.sum(_a_xw) / _sum_weight for _j = 0 to _n - 1 _sqerror_sum := _sqerror_sum + pow(_mean - array.get(_a_src, _j), 2) * array.get(_a_weight, _j) _variance := _sqerror_sum / ((_nonzero_n - 1) * _sum_weight / _nonzero_n) _dev := sqrt(_variance) _mse := _sqerror_sum / _sum_weight _rmse := sqrt(_mse) [_mean, _variance, _dev, _mse, _rmse] //} // ----------------------------------------------------------------------------- // Example usage : // ----------------------------------------------------------------------------- len = input(20) // ----------------------------------------------------------------------------- // From series : // ----------------------------------------------------------------------------- [m, v, d, mse, rmse] = f_weighted_sd_from_series(close, volume, len) plot(m, color = color.blue) plot(m + d * 2, color = color.blue) plot(m - d * 2, color = color.blue) // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // From arrays : // ----------------------------------------------------------------------------- var float[] a_src = array.new_float() var float[] a_weight = array.new_float() if barstate.isfirst for i = 1 to len array.unshift(a_weight, i) array.unshift(a_src, close) if array.size(a_src) > len array.pop(a_src) [a_m, a_v, a_d, a_mse, a_rmse] = f_weighted_sd_from_arrays(a_src, a_weight, len) plot(a_m, color = color.orange) plot(a_m + a_d * 2, color = color.orange) plot(a_m - a_d * 2, color = color.orange) // ----------------------------------------------------------------------------- series_text = "Mean : " + tostring(m) + "\nVariance : " + tostring(v) + "\nSD : " + tostring(d) + "\nMSE : " + tostring(mse) + "\nRMSE : " + tostring(rmse) array_text = "Mean : " + tostring(a_m) + "\nVariance : " + tostring(a_v) + "\nSD : " + tostring(a_d) + "\nMSE : " + tostring(a_mse) + "\nRMSE : " + tostring(a_rmse) debug_text = "Volume weighted from time series : \n" + series_text + "\n\nLinearly weighted from arrays : \n" + array_text //debug = label.new(x = bar_index, y = close, text = debug_text, style = label.style_label_left) //.delete(debug[1]) //test strategy if low <= (m - d * 2) strategy.entry("LE", strategy.long) if high >= (m + d * 2) strategy.entry("SE", strategy.short) // User Options to Change Inputs (%) stopPer = input(3.11, title='Stop Loss %', type=input.float) / 100 takePer = input(7.50, title='Take Profit %', type=input.float) / 100 // Determine where you've entered and in what direction longStop = strategy.position_avg_price * (1 - stopPer) shortStop = strategy.position_avg_price * (1 + stopPer) shortTake = strategy.position_avg_price * (1 - takePer) longTake = strategy.position_avg_price * (1 + takePer) if strategy.position_size > 0 strategy.exit(id="Close Long", stop=longStop, limit=longTake) // strategy.close("LE", when = (longStop) or (longTake), qty_percent = 100) if strategy.position_size < 0 strategy.exit(id="Close Short", stop=shortStop, limit=shortTake) // strategy.close("SE", when = (shortStop) or (shortTake), qty_percent = 100)