La estrategia de seguimiento de la reversión de la media móvil doble es una estrategia de negociación cuantitativa que utiliza cruces de media móvil como señales de negociación. La estrategia combina la diferencia de la media móvil rápida y lenta del indicador MACD y su línea de señal, así como la relación larga / corta de los volúmenes de negociación, para formar señales de negociación y capturar oportunidades de reversión del mercado.
La estrategia juzga principalmente la relación entre la línea rápida y la línea lenta. Genera una señal de compra cuando la línea rápida cruza por encima de la línea lenta, y una señal de venta cuando la línea rápida cruza por debajo de la línea lenta. Además, también juzga de manera integral el estado largo / corto del mercado basado en el estado largo / corto del valor de la diferencia MACD, la relación entre la diferencia y la línea de señal, la situación larga / corta de los volúmenes de negociación, etc.
Específicamente, la estrategia juzga el tamaño y la dirección del valor de la diferencia MACD, el cruce entre la diferencia y la línea de señal, la dirección consistente o opuesta entre la diferencia y la línea de señal, etc. Estas situaciones reflejan las características de rebote del submercado después de una caída.
Cuando la diferencia y la línea de señal muestran señales de reversión del mercado y los volúmenes de negociación corresponden para confirmar la reversión del mercado, se generarán señales de negociación.
La estrategia de seguimiento de reversión de promedios móviles dobles considera de manera integral indicadores como promedios móviles, MACD y volúmenes de negociación. Al capturar sus señales de reversión, se seleccionan puntos de reversión apropiados para establecer posiciones. Todavía hay un gran espacio para optimizar esta estrategia, la robustez y la rentabilidad se pueden mejorar aún más con técnicas como el aprendizaje automático y la gestión de riesgos.
/*backtest start: 2024-01-20 00:00:00 end: 2024-02-19 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("3 10 Oscillator Profile Flagging", shorttitle="3 10 Oscillator Profile Flagging", overlay=true) signalBiasValue = input(title="Signal Bias", defval=0.26) macdBiasValue = input(title="MACD Bias", defval=0.8) shortLookBack = input( title="Short LookBack", defval=3) longLookBack = input( title="Long LookBack", defval=10) fast_ma = ta.sma(close, 3) slow_ma = ta.sma(close, 10) macd = fast_ma - slow_ma signal = ta.sma(macd, 16) hline(0, "Zero Line", color = color.black) buyVolume = volume*((close-low)/(high-low)) sellVolume = volume*((high-close)/(high-low)) buyVolSlope = buyVolume - buyVolume[1] sellVolSlope = sellVolume - sellVolume[1] signalSlope = ( signal - signal[1] ) macdSlope = ( macd - macd[1] ) //plot(macdSlope, color=color.red, title="Total Volume") //plot(signalSlope, color=color.green, title="Total Volume") intrabarRange = high - low getLookBackSlope(lookBack) => signal - signal[lookBack] getBuyerVolBias(lookBack) => j = 0 for i = 1 to lookBack if buyVolume[i] > sellVolume[i] j += 1 j getSellerVolBias(lookBack) => j = 0 for i = 1 to lookBack if sellVolume[i] > buyVolume[i] j += 1 j getVolBias(lookBack) => float b = 0 float s = 0 for i = 1 to lookBack b += buyVolume[i] s += sellVolume[i] b > s getSignalBuyerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] > signalBiasValue j += 1 j getSignalSellerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < ( 0 - signalBiasValue ) j += 1 j getSignalNoBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < signalBiasValue and signal[i] > ( 0 - signalBiasValue ) j += 1 j getPriceRising(lookBack) => j = 0 for i = 1 to lookBack if close[i] > close[i + 1] j += 1 j getPriceFalling(lookBack) => j = 0 for i = 1 to lookBack if close[i] < close[i + 1] j += 1 j getRangeNarrowing(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] < intrabarRange[i + 1] j+= 1 j getRangeBroadening(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] > intrabarRange[i + 1] j+= 1 j bool isNegativeSignalReversal = signalSlope < 0 and signalSlope[1] > 0 bool isNegativeMacdReversal = macdSlope < 0 and macdSlope[1] > 0 bool isPositiveSignalReversal = signalSlope > 0 and signalSlope[1] < 0 bool isPositiveMacdReversal = macdSlope > 0 and macdSlope[1] < 0 bool hasBearInversion = signalSlope > 0 and macdSlope < 0 bool hasBullInversion = signalSlope < 0 and macdSlope > 0 bool hasSignalBias = math.abs(signal) >= signalBiasValue bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0 - signalBiasValue ) bool hasSignalBuyerBias = hasSignalBias and signal > 0 bool hasSignalSellerBias = hasSignalBias and signal < 0 bool hasPositiveMACDBias = macd > macdBiasValue bool hasNegativeMACDBias = macd < ( 0 - macdBiasValue ) bool hasBullAntiPattern = ta.crossunder(macd, signal) bool hasBearAntiPattern = ta.crossover(macd, signal) bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 ) bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 ) // 7.48 Profit 52.5% if ( hasSignificantBuyerVolBias and getPriceRising(shortLookBack) == shortLookBack and getBuyerVolBias(shortLookBack) == shortLookBack and hasPositiveMACDBias and hasBullInversion) strategy.entry("Short1", strategy.short) strategy.exit("TPS", "Short1", limit=strategy.position_avg_price - 0.75, stop=strategy.position_avg_price + 0.5) // 32.53 Profit 47.91% if ( getPriceFalling(shortLookBack) and (getVolBias(shortLookBack) == false) and signalSlope < 0 and hasSignalSellerBias) strategy.entry("Long1", strategy.long) strategy.exit("TPS", "Long1", limit=strategy.position_avg_price + 0.75, stop=strategy.position_avg_price - 0.5)