Cette stratégie combine les chandeliers Heikin-Ashi et l'indicateur PSAR pour l'identification des tendances et les signaux commerciaux.
La logique de la stratégie:
Calculer Heikin-Ashi ouvert, fermé, haut et bas.
La couleur de la bougie détermine la tendance intermédiaire taureau/ours.
Calculer le PSAR et identifier l'inversion de tendance lorsqu'il franchit le prix Heikin-Ashi.
Vous allez long sur la tendance à la baisse et court sur la tendance à la hausse.
Le PSAR s'adapte en fonction des nouveaux hauts/baissés et du facteur d'accélération.
Les avantages:
La combinaison améliore la précision - Heikin-Ashi filtre le bruit, PSAR capte les retours en arrière.
PSAR adaptatif, adaptable à l'évolution des conditions du marché
Des règles claires profitent à l'optimisation des paramètres.
Les risques:
Heikin-Ashi et PSAR peuvent manquer les meilleures entrées.
Les SARP sont sujettes à de faux signaux en cas de tendance agitée.
Une gestion stricte des risques est nécessaire pour se défendre contre les fouets.
En résumé, cette stratégie associe Heikin-Ashi pour le contexte de tendance avec PSAR pour le timing.
/*backtest start: 2023-08-12 00:00:00 end: 2023-09-11 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy("QuantNomad - Heikin-Ashi PSAR Strategy", shorttitle = "HA-PSAR[QN]", overlay = false) //////////// // INPUTS // start = input(0.02, title = "PSAR Start") increment = input(0.02, title = "PSAR Increment") maximum = input(0.2, title = "PSAR Max") start_year = input(2018, 'Start Year', input.integer) start_month = input(1, 'Start Month', input.integer) start_day = input(1, 'Start Day', input.integer) end_year = input(2100, 'End Year', input.integer) end_month = input(1, 'End Month', input.integer) end_day = input(1, 'End Day', input.integer) date_start = timestamp(start_year, start_month, start_day, 00, 00) date_end = timestamp(end_year, end_month, end_day, 00, 00) // if time is in correct period time_cond = time >= date_start and time <= date_end // Calculation HA Values haopen = 0.0 haclose = (open + high + low + close) / 4 haopen := na(haopen[1]) ? (open + close) / 2 : (haopen[1] + haclose[1]) / 2 hahigh = max(high, max(haopen, haclose)) halow = min(low, min(haopen, haclose)) // HA colors hacolor = haclose > haopen ? color.green : color.red psar = 0.0 // PSAR af = 0.0 // Acceleration Factor trend_dir = 0 // Current direction of PSAR ep = 0.0 // Extreme point trend_bars = 0 sar_long_to_short = trend_dir[1] == 1 and haclose <= psar[1] // PSAR switches from long to short sar_short_to_long = trend_dir[1] == -1 and haclose >= psar[1] // PSAR switches from short to long trend_change = barstate.isfirst[1] or sar_long_to_short or sar_short_to_long // Calculate trend direction trend_dir := barstate.isfirst[1] and haclose[1] > haopen[1] ? 1 : barstate.isfirst[1] and haclose[1] <= haopen[1] ? -1 : sar_long_to_short ? -1 : sar_short_to_long ? 1 : nz(trend_dir[1]) trend_bars := sar_long_to_short ? -1 : sar_short_to_long ? 1 : trend_dir == 1 ? nz(trend_bars[1]) + 1 : trend_dir == -1 ? nz(trend_bars[1]) - 1 : nz(trend_bars[1]) // Calculate Acceleration Factor af := trend_change ? start : (trend_dir == 1 and hahigh > ep[1]) or (trend_dir == -1 and low < ep[1]) ? min(maximum, af[1] + increment) : af[1] // Calculate extreme point ep := trend_change and trend_dir == 1 ? hahigh : trend_change and trend_dir == -1 ? halow : trend_dir == 1 ? max(ep[1], hahigh) : min(ep[1], halow) // Calculate PSAR psar := barstate.isfirst[1] and haclose[1] > haopen[1] ? halow[1] : barstate.isfirst[1] and haclose[1] <= haopen[1] ? hahigh[1] : trend_change ? ep[1] : trend_dir == 1 ? psar[1] + af * (ep - psar[1]) : psar[1] - af * (psar[1] - ep) plotcandle(haopen, hahigh, halow, haclose, title = "HA", color = hacolor) plot(psar, style=plot.style_cross, color=trend_dir == 1 ? color.green : color.red, linewidth = 2) // Strategy strategy.entry("long", true, when = sar_short_to_long and time_cond) strategy.entry("short", false, when = sar_long_to_short and time_cond)