Cette stratégie utilise l'indicateur Adaptive Zero Lag EMA pour la détermination des tendances et les signaux de trading.
La logique de la stratégie:
Calculer l'EMA de retard zéro adaptatif avec des algorithmes adaptatifs cosinus et I-Q.
L'EMA est une EMA normale, l'EC est une EMA adaptative à retard zéro.
Faire du long lorsque la CE dépasse l'EMA, et du short lorsqu'elle dépasse l'EMA.
Calculer la courbe d'erreur et définir le seuil pour filtrer les faux signaux.
Utilisez des points fixes pour le stop loss et le profit pour le contrôle des risques.
Les avantages:
L'EMA adaptative réduit considérablement le décalage des indicateurs.
Le filtrage des seuils améliore la qualité du signal et évite les fausses éruptions.
Des arrêts et des cibles simples sont faciles à mettre en œuvre.
Les risques:
Les paramètres de l'EMA adaptatif peuvent devenir instables.
Les arrêts/objectifs fixes ne s'adaptent pas à l'évolution des conditions du marché.
Il n'y a pas de limite sur la taille des pertes, il y a des risques de gros pertes.
En résumé, cette stratégie utilise une EMA adaptative pour suivre la tendance, réduisant le décalage dans une certaine mesure.
/*backtest start: 2023-09-05 00:00:00 end: 2023-09-12 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 strategy(title="Adaptive Zero Lag EMA v2 (w/ Backtest Date Range)", shorttitle="AZLEMA", overlay = true, commission_type=strategy.commission.cash_per_contract, slippage = 5, pyramiding=1, calc_on_every_tick=true) src = input(title="Source", defval=close) secType = input(title="Security Type", options=["Forex", "Metal Spot", "Cryptocurrency","Custom"], defval="Forex") contracts = input(title="Custom # of Contracts", defval=1, step=1) limit = input(title="Max Lots", defval=100) Period = input(title="Period", defval = 20) adaptive = input(title="Adaptive Method", options=["Off", "Cos IFM", "I-Q IFM", "Average"], defval="Cos IFM") GainLimit = input(title="Gain Limit", defval = 8) Threshold = input(title="Threshold", defval=0.05, step=0.01) fixedSL = input(title="SL Points", defval=70) fixedTP = input(title="TP Points", defval=10) risk = input(title='Risk', defval=0.01, step=0.01) // === INPUT BACKTEST RANGE === FromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12) FromDay = input(defval = 1, title = "From Day", minval = 1, maxval = 31) FromYear = input(defval = 2019, title = "From Year", minval = 2015) ToMonth = input(defval = 1, title = "To Month", minval = 1, maxval = 12) ToDay = input(defval = 1, title = "To Day", minval = 1, maxval = 31) ToYear = input(defval = 9999, title = "To Year", minval = 2015) // === FUNCTION EXAMPLE === start = timestamp(FromYear, FromMonth, FromDay, 00, 00) // backtest start window finish = timestamp(ToYear, ToMonth, ToDay, 23, 59) // backtest finish window window() => true range = 50 //input(title="Max Period", defval=60, minval=8, maxval=100) PI = 3.14159265359 lenIQ = 0.0 lenC = 0.0 //############################################################################## //I-Q IFM //############################################################################## if(adaptive=="I-Q IFM" or adaptive=="Average") imult = 0.635 qmult = 0.338 inphase = 0.0 quadrature = 0.0 re = 0.0 im = 0.0 deltaIQ = 0.0 instIQ = 0.0 V = 0.0 P = src - src[7] inphase := 1.25*(P[4] - imult*P[2]) + imult*nz(inphase[3]) quadrature := P[2] - qmult*P + qmult*nz(quadrature[2]) re := 0.2*(inphase*inphase[1] + quadrature*quadrature[1]) + 0.8*nz(re[1]) im := 0.2*(inphase*quadrature[1] - inphase[1]*quadrature) + 0.8*nz(im[1]) if (re!= 0.0) deltaIQ := atan(im/re) for i=0 to range V := V + deltaIQ[i] if (V > 2*PI and instIQ == 0.0) instIQ := i if (instIQ == 0.0) instIQ := nz(instIQ[1]) lenIQ := 0.25*instIQ + 0.75*nz(lenIQ[1]) //############################################################################## //COSINE IFM //############################################################################## if(adaptive == "Cos IFM" or adaptive == "Average") s2 = 0.0 s3 = 0.0 deltaC = 0.0 instC = 0.0 v1 = 0.0 v2 = 0.0 v4 = 0.0 v1 := src - src[7] s2 := 0.2*(v1[1] + v1)*(v1[1] + v1) + 0.8*nz(s2[1]) s3 := 0.2*(v1[1] - v1)*(v1[1] - v1) + 0.8*nz(s3[1]) if (s2 != 0) v2 := sqrt(s3/s2) if (s3 != 0) deltaC := 2*atan(v2) for i = 0 to range v4 := v4 + deltaC[i] if (v4 > 2*PI and instC == 0.0) instC := i - 1 if (instC == 0.0) instC := instC[1] lenC := 0.25*instC + 0.75*nz(lenC[1]) if (adaptive == "Cos IFM") Period := round(lenC) if (adaptive == "I-Q IFM") Period := round(lenIQ) if (adaptive == "Average") Period := round((lenC + lenIQ)/2) //############################################################################## //ZERO LAG EXPONENTIAL MOVING AVERAGE //############################################################################## LeastError = 1000000.0 EC = 0.0 Gain = 0.0 EMA = 0.0 Error = 0.0 BestGain = 0.0 alpha =2/(Period + 1) EMA := alpha*src + (1-alpha)*nz(EMA[1]) for i = -GainLimit to GainLimit Gain := i/10 EC := alpha*(EMA + Gain*(src - nz(EC[1]))) + (1 - alpha)*nz(EC[1]) Error := src - EC if(abs(Error)<LeastError) LeastError := abs(Error) BestGain := Gain EC := alpha*(EMA + BestGain*(src - nz(EC[1]))) + (1-alpha)*nz(EC[1]) plot(EC, title="EC", color=orange, linewidth=2) plot(EMA, title="EMA", color=red, linewidth=2) //############################################################################## //Trade Logic & Risk Management //############################################################################## buy = crossover(EC,EMA) and 100*LeastError/src > Threshold sell = crossunder(EC,EMA) and 100*LeastError/src > Threshold secScaler = secType == "Forex" ? 100000 : secType == "Metal Spot" ? 100 : secType == "Cryptocurrency" ? 10000 : secType == "Custom" ? contracts : 0 strategy.initial_capital = 50000 balance = strategy.initial_capital + strategy.netprofit if (time>timestamp(2016, 1, 1 , 0, 0) and balance > 0) //LONG lots = ((risk * balance)/fixedSL)*secScaler lots := lots > limit * secScaler ? limit * secScaler : lots strategy.entry("BUY", strategy.long, oca_name="BUY", when=buy and window()) strategy.exit("B.Exit", "BUY", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP) //SHORT strategy.entry("SELL", strategy.short, oca_name="SELL",when=sell and window()) strategy.exit("S.Exit", "SELL", qty_percent = 100, loss=fixedSL, trail_offset=15, trail_points=fixedTP)