Les ressources ont été chargées... Je charge...

Stratégie de négociation de renversement basée sur le RSI stochastique

Auteur:ChaoZhang est là., Date: 2023-09-13 18h13
Les étiquettes:

Cette stratégie s'appelle Reversal Trading Strategy Based on Stochastic RSI. Elle utilise l'indicateur Stochastic RSI pour identifier les situations de surachat/survente, en entrant dans des transactions inversées lorsque les extrêmes s'inversent.

L'indicateur RSI stochastique calcule l'oscillateur stochastique sur les valeurs du RSI, générant des signaux de ligne K et D qui reflètent les conditions de surachat/survente dans l'indicateur RSI lui-même.

La logique de négociation est la suivante:

  1. Calculer le RSI rapide pour détecter le surachat/survente.

  2. Appliquer une moyenne mobile pondérée sur le RSI pour dériver le signal stochastique RSI K-line.

  3. Lorsque la ligne K traverse au-dessus de sa moyenne mobile, un signal d'achat est généré.

  4. Les signaux d'inversion à proximité des extrêmes de surachat ou de survente indiquent des opportunités commerciales d'inversion.

L'avantage de cette stratégie est d'utiliser le RSI stochastique pour identifier les points d'inversion.

En conclusion, le RSI stochastique est un moyen courant et utile de déterminer le moment de l'inversion.


/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © MightyZinger
//@version=4
strategy(shorttitle="MZ SRSI",title="MightyZinger SRSI Strategy", overlay=false, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.fixed, default_qty_value=5,commission_value=0.1)

//heiking ashi calculation
UseHAcandles    = input(true, title="Use Heikin Ashi Candles in Algo Calculations")
////
// === /INPUTS ===

// === BASE FUNCTIONS ===
haClose = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, close) : close
haOpen  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, open) : open
haHigh  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, high) : high
haLow   = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, low) : low


//Backtest dates
fromMonth = input(defval = 1,    title = "From Month",      type = input.integer, minval = 1, maxval = 12)
fromDay   = input(defval = 1,    title = "From Day",        type = input.integer, minval = 1, maxval = 31)
fromYear  = input(defval = 2021, title = "From Year",       type = input.integer, minval = 1970)
thruMonth = input(defval = 12,    title = "Thru Month",      type = input.integer, minval = 1, maxval = 12)
thruDay   = input(defval = 30,    title = "Thru Day",        type = input.integer, minval = 1, maxval = 31)
thruYear  = input(defval = 2021, title = "Thru Year",       type = input.integer, minval = 1970)

showDate  = input(defval = true, title = "Show Date Range", type = input.bool)

start     = timestamp(fromYear, fromMonth, fromDay, 00, 00)        // backtest start window
finish    = timestamp(thruYear, thruMonth, thruDay, 23, 59)        // backtest finish window
window()  => true       // create function "within window of time"

src = UseHAcandles ? haClose : input(close, title="Source")

TopBand = input(80, step=0.01)
LowBand = input(20, step=0.01)
lengthRSI = input(2, minval=1,title="RSI Length")
lengthMA = input(50, minval=1,title="MA Length")
lengthRSI_MA= input(5, minval=1,title="RSI MA Length")


//RSI Source
maType = input(title="MA Type", type=input.string, defval="LRC", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])
rsiMaType = input(title="RSI MA Type", type=input.string, defval="TMA", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])

//MA Function

//           Pre-reqs
//
tema(src, len) =>
    ema1 = ema(src, len)
    ema2 = ema(ema1, len)
    ema3 = ema(ema2, len)
    (3 * ema1) - (3 * ema2) + ema3
kidiv = input(defval=1,maxval=4,  title="Kijun MOD Divider")

jurik_phase = input(title="* Jurik (JMA) Only - Phase", type=input.integer, defval=3)
jurik_power = input(title="* Jurik (JMA) Only - Power", type=input.integer, defval=1)
volatility_lookback = input(10, title="* Volatility Adjusted (VAMA) Only - Volatility lookback length")
//                  MF
beta = input(0.8,minval=0,maxval=1,step=0.1,  title="Modular Filter, General Filter Only - Beta")
feedback = input(false, title="Modular Filter Only - Feedback")
z = input(0.5,title="Modular Filter Only - Feedback Weighting",step=0.1, minval=0, maxval=1)
//EDSMA
ssfLength = input(title="EDSMA - Super Smoother Filter Length", type=input.integer, minval=1, defval=20)
ssfPoles = input(title="EDSMA - Super Smoother Filter Poles", type=input.integer, defval=2, options=[2, 3])

//----
//                  EDSMA
get2PoleSSF(src, length) =>
    PI = 2 * asin(1)
    arg = sqrt(2) * PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(arg)
    c2 = b1
    c3 = -pow(a1, 2)
    c1 = 1 - c2 - c3
    
    ssf = 0.0
    ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2])

get3PoleSSF(src, length) =>
    PI = 2 * asin(1)

    arg = PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(1.738 * arg)
    c1 = pow(a1, 2)

    coef2 = b1 + c1
    coef3 = -(c1 + b1 * c1)
    coef4 = pow(c1, 2)
    coef1 = 1 - coef2 - coef3 - coef4

    ssf = 0.0
    ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3])

//          MA Main function
ma(type, src, len) =>
    float result = 0
    if type=="TMA"
        result := sma(sma(src, ceil(len / 2)), floor(len / 2) + 1)
    if type=="MF"
        ts=0.,b=0.,c=0.,os=0.
        //----
        alpha = 2/(len+1)
        a = feedback ? z*src + (1-z)*nz(ts[1],src) : src
        //----
        b := a > alpha*a+(1-alpha)*nz(b[1],a) ? a : alpha*a+(1-alpha)*nz(b[1],a)
        c := a < alpha*a+(1-alpha)*nz(c[1],a) ? a : alpha*a+(1-alpha)*nz(c[1],a)
        os := a == b ? 1 : a == c ? 0 : os[1]
        //----
        upper = beta*b+(1-beta)*c
        lower = beta*c+(1-beta)*b 
        ts := os*upper+(1-os)*lower
        result := ts
    if type=="LRC"
        result := linreg(src, len, 0)
    if type=="SMA" // Simple
        result := sma(src, len)
    if type=="EMA" // Exponential
        result := ema(src, len)
    if type=="DEMA" // Double Exponential
        e = ema(src, len)
        result := 2 * e - ema(e, len)
    if type=="TEMA" // Triple Exponential
        e = ema(src, len)
        result := 3 * (e - ema(e, len)) + ema(ema(e, len), len)
    if type=="WMA" // Weighted
        result := wma(src, len)
    if type=="VAMA" // Volatility Adjusted
        /// Copyright © 2019 to present, Joris Duyck (JD)
        mid=ema(src,len)
        dev=src-mid
        vol_up=highest(dev,volatility_lookback)
        vol_down=lowest(dev,volatility_lookback)
        result := mid+avg(vol_up,vol_down)
    if type=="HMA" // Hull
        result := wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len)))
    if type=="JMA" // Jurik
        /// Copyright © 2018 Alex Orekhov (everget)
        /// Copyright © 2017 Jurik Research and Consulting.
        phaseRatio = jurik_phase < -100 ? 0.5 : jurik_phase > 100 ? 2.5 : jurik_phase / 100 + 1.5
        beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
        alpha = pow(beta, jurik_power)
        jma = 0.0
        e0 = 0.0
        e0 := (1 - alpha) * src + alpha * nz(e0[1])
        e1 = 0.0
        e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
        e2 = 0.0
        e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
        jma := e2 + nz(jma[1])
        result := jma
    if type=="Kijun v2"
        kijun = avg(lowest(len), highest(len))//, (open + close)/2)
        conversionLine = avg(lowest(len/kidiv), highest(len/kidiv))
        delta = (kijun + conversionLine)/2
        result :=delta
    if type=="McGinley"
        mg = 0.0
        mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
        result :=mg
    if type=="EDSMA"
    
        zeros = src - nz(src[2])
        avgZeros = (zeros + zeros[1]) / 2
        
        // Ehlers Super Smoother Filter 
        ssf = ssfPoles == 2
             ? get2PoleSSF(avgZeros, ssfLength)
             : get3PoleSSF(avgZeros, ssfLength)
        
        // Rescale filter in terms of Standard Deviations
        stdev = stdev(ssf, len)
        scaledFilter = stdev != 0
             ? ssf / stdev
             : 0
        
        alpha = 5 * abs(scaledFilter) / len
        
        edsma = 0.0
        edsma := alpha * src + (1 - alpha) * nz(edsma[1])
        result :=  edsma
    result


//Indicator
hline(TopBand, color=color.red,linestyle=hline.style_dotted, linewidth=2)
hline(LowBand, color=color.green, linestyle=hline.style_dashed, linewidth=2)

// RSI Definition
rsiSource = ma(maType, src , lengthMA)
frsi = rsi(rsiSource, lengthRSI)
fsma = ma(rsiMaType, frsi , lengthRSI_MA)

plot(frsi,title='frsi', color= color.lime, linewidth=3)
fsmaColor=color.new(color.red, 80)
plot(fsma,title='fsma', color= fsmaColor , linewidth=3, style=plot.style_area)

//Background
bgcolor(frsi > fsma ? color.lime : color.orange, 80)

longcondition = crossover (frsi , fsma)
shortcondition = crossunder(frsi , fsma)


////////////////////////////////
//if (longcondition)
//    strategy.entry("BUY", strategy.long, when = window())
    
//if (shortcondition)
//    strategy.close("SELL", strategy.short, when = window())

strategy.entry(id="long", long = true, when = longcondition and window())
strategy.close("long", when = shortcondition and window())

Plus de