Cette stratégie est une stratégie de stop loss basée sur le canal qui utilise l'indicateur EMA. Elle intègre le jugement de tendance, le suivi du canal et le stop loss dynamique et d'autres indicateurs techniques traditionnels. Elle détermine les cycles taureau et ours en jugeant l'ordre des EMA et combine le suivi du canal ATR pour mettre en œuvre le stop loss afin que le point de stop loss puisse continuer à suivre les mouvements de prix. Ce type d'idée de stop loss est plus actif et évite efficacement la probabilité d'un stop loss trop agressif.
La stratégie utilise principalement trois courbes EMA avec des cycles différents pour déterminer l'état taureau et l'état ours.
Après avoir déterminé le cycle haussier et baissier, la stratégie utilise le prix K-line échantillonné par SMMA et les multiples de l'indicateur ATR comme gamme de canaux. Les signaux de trading ne sont émis que lorsque le prix franchit ce canal.
Les principaux avantages de cette stratégie sont les suivants:
Les principaux risques de cette stratégie sont concentrés dans les problèmes causés par des paramètres incorrects, tels que le surtrading et le stop loss.
Cette stratégie intègre plusieurs indicateurs et méthodes techniques traditionnels tels que le jugement des tendances, le trading par canal et le stop loss dynamique pour former un système de trading de stop loss relativement complet.
/*backtest start: 2023-12-10 00:00:00 end: 2023-12-12 04:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © kgynofomo //@version=5 strategy(title="[Salavi] | Andy Advance Pro Strategy [ETH|M15]",overlay = true, pyramiding = 1,initial_capital = 10000, default_qty_type = strategy.cash,default_qty_value = 10000) ema_short = ta.ema(close,5) ema_middle = ta.ema(close,20) ema_long = ta.ema(close,40) cycle_1 = ema_short>ema_middle and ema_middle>ema_long cycle_2 = ema_middle>ema_short and ema_short>ema_long cycle_3 = ema_middle>ema_long and ema_long>ema_short cycle_4 = ema_long>ema_middle and ema_middle>ema_short cycle_5 = ema_long>ema_short and ema_short>ema_middle cycle_6 = ema_short>ema_long and ema_long>ema_middle bull_cycle = cycle_1 or cycle_2 or cycle_3 bear_cycle = cycle_4 or cycle_5 or cycle_6 // label.new("cycle_1") // bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na) // bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na) // bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na) // bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na) // bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na) // bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na) // Inputs a = input(2, title='Key Vaule. \'This changes the sensitivity\'') c = input(7, title='ATR Period') h = false xATR = ta.atr(c) nLoss = a * xATR src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close xATRTrailingStop = 0.0 iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1 xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2 pos = 0 iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0) pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3 xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue ema = ta.ema(src, 1) above = ta.crossover(ema, xATRTrailingStop) below = ta.crossover(xATRTrailingStop, ema) buy = src > xATRTrailingStop and above sell = src < xATRTrailingStop and below barbuy = src > xATRTrailingStop barsell = src < xATRTrailingStop atr = ta.atr(14) atr_length = input.int(25) atr_rsi = ta.rsi(atr,atr_length) atr_valid = atr_rsi>50 long_condition = buy and bull_cycle and atr_valid short_condition = sell and bear_cycle and atr_valid Exit_long_condition = short_condition Exit_short_condition = long_condition if long_condition strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here") if Exit_long_condition strategy.close("Andy Buy",comment="Andy Buy Out") // strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here") // strategy.close("Andy fandan Buy",comment="Andy short Out") if short_condition strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here") // strategy.exit("STR","Long",stop=longstoploss) if Exit_short_condition strategy.close("Andy Short",comment="Andy short Out") // strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here") // strategy.close("Andy fandan Short",comment="Andy Buy Out") inLongTrade = strategy.position_size > 0 inLongTradecolor = #58D68D notInTrade = strategy.position_size == 0 inShortTrade = strategy.position_size < 0 // bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na) plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na) plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny) plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny) // //atr > close *0.01* parameter // // MONTHLY TABLE PERFORMANCE - Developed by @QuantNomad // // ************************************************************************************************************************************************************************************************************************************************************************* // show_performance = input.bool(true, 'Show Monthly Performance ?', group='Performance - credits: @QuantNomad') // prec = input(2, 'Return Precision', group='Performance - credits: @QuantNomad') // if show_performance // new_month = month(time) != month(time[1]) // new_year = year(time) != year(time[1]) // eq = strategy.equity // bar_pnl = eq / eq[1] - 1 // cur_month_pnl = 0.0 // cur_year_pnl = 0.0 // // Current Monthly P&L // cur_month_pnl := new_month ? 0.0 : // (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 // // Current Yearly P&L // cur_year_pnl := new_year ? 0.0 : // (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 // // Arrays to store Yearly and Monthly P&Ls // var month_pnl = array.new_float(0) // var month_time = array.new_int(0) // var year_pnl = array.new_float(0) // var year_time = array.new_int(0) // last_computed = false // if (not na(cur_month_pnl[1]) and (new_month or barstate.islastconfirmedhistory)) // if (last_computed[1]) // array.pop(month_pnl) // array.pop(month_time) // array.push(month_pnl , cur_month_pnl[1]) // array.push(month_time, time[1]) // if (not na(cur_year_pnl[1]) and (new_year or barstate.islastconfirmedhistory)) // if (last_computed[1]) // array.pop(year_pnl) // array.pop(year_time) // array.push(year_pnl , cur_year_pnl[1]) // array.push(year_time, time[1]) // last_computed := barstate.islastconfirmedhistory ? true : nz(last_computed[1]) // // Monthly P&L Table // var monthly_table = table(na) // if (barstate.islastconfirmedhistory) // monthly_table := table.new(position.bottom_center, columns = 14, rows = array.size(year_pnl) + 1, border_width = 1) // table.cell(monthly_table, 0, 0, "", bgcolor = #cccccc) // table.cell(monthly_table, 1, 0, "Jan", bgcolor = #cccccc) // table.cell(monthly_table, 2, 0, "Feb", bgcolor = #cccccc) // table.cell(monthly_table, 3, 0, "Mar", bgcolor = #cccccc) // table.cell(monthly_table, 4, 0, "Apr", bgcolor = #cccccc) // table.cell(monthly_table, 5, 0, "May", bgcolor = #cccccc) // table.cell(monthly_table, 6, 0, "Jun", bgcolor = #cccccc) // table.cell(monthly_table, 7, 0, "Jul", bgcolor = #cccccc) // table.cell(monthly_table, 8, 0, "Aug", bgcolor = #cccccc) // table.cell(monthly_table, 9, 0, "Sep", bgcolor = #cccccc) // table.cell(monthly_table, 10, 0, "Oct", bgcolor = #cccccc) // table.cell(monthly_table, 11, 0, "Nov", bgcolor = #cccccc) // table.cell(monthly_table, 12, 0, "Dec", bgcolor = #cccccc) // table.cell(monthly_table, 13, 0, "Year", bgcolor = #999999) // for yi = 0 to array.size(year_pnl) - 1 // table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor = #cccccc) // y_color = array.get(year_pnl, yi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40) // table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor = y_color, text_color=color.new(color.white, 0)) // for mi = 0 to array.size(month_time) - 1 // m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 // m_col = month(array.get(month_time, mi)) // m_color = array.get(month_pnl, mi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40) // table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor = m_color, text_color=color.new(color.white, 0))