Cette stratégie utilise de nombreux indicateurs techniques tels que l'IMACD, l'EMA et le tableau de l'équilibre initial pour construire un modèle d'arbre de décision complet pour envoyer des signaux d'achat et de vente.
Multiplier les signaux: Multiplier lorsque l'IMACD est en couleur pour certaines conditions et que l'EMA 40 est supérieur à celui du graphique des nuages
Signal de décrochage: décrochage lorsque l'IMACD est en rouge et que l'EMA 40 est inférieure à la trajectoire du tableau des nuages
Résolution des risques: optimisation des paramètres, ajustement de la longueur de l'EMA et simplification des processus opérationnels.
Cette stratégie utilise des tendances d'identification de plusieurs indicateurs pour construire des modèles d'arbres de décision pour produire des signaux de trading. Les avantages sont la haute qualité des signaux, une grande précision et une optimisation progressive. Il est nécessaire de se concentrer sur l'optimisation des paramètres et les stratégies de stop-loss pour contrôler les risques de trading afin d'obtenir des rendements stables à long terme.
/*backtest
start: 2024-01-14 00:00:00
end: 2024-01-21 00:00:00
period: 30m
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=5
strategy("Decision Tree Strategy: IMACD, EMA and Ichimoku [cryptoonchain]", overlay=true)
lengthMA = input(34, title="Length MA")
lengthSignal = input(9, title="Length Signal")
conversionPeriods = input.int(9, minval=1, title="Conversion Line Length")
basePeriods = input.int(26, minval=1, title="Base Line Length")
laggingSpan2Periods = input.int(52, minval=1, title="Leading Span B Length")
displacement = input.int(26, minval=1, title="Lagging Span")
emaLength = input(40, title="EMA Length") // Added user-configurable EMA length
calc_smma(src, len) =>
smma = float(na)
smma := na(smma[1]) ? ta.sma(src, len) : (smma[1] * (len - 1) + src) / len
smma
calc_zlema(src, length) =>
ema1 = ta.ema(src, length)
ema2 = ta.ema(ema1, length)
d = ema1 - ema2
ema1 + d
src = ohlc4
hi = calc_smma(high, lengthMA)
lo = calc_smma(low, lengthMA)
mi = calc_zlema(src, lengthMA)
md = (mi > hi) ? (mi - hi) : (mi < lo) ? (mi - lo) : 0
sb = ta.sma(md, lengthSignal)
sh = md - sb
mdc = src > mi ? (src > hi ? color.rgb(128, 255, 0, 26) : color.green) : (src < lo ? color.red : color.orange)
colorCondition = color.rgb(128, 255, 0, 26)
conversionLine = math.avg(ta.lowest(conversionPeriods), ta.highest(conversionPeriods))
baseLine = math.avg(ta.lowest(basePeriods), ta.highest(basePeriods))
leadLine1 = math.avg(conversionLine, baseLine)
leadLine2 = math.avg(ta.lowest(laggingSpan2Periods), ta.highest(laggingSpan2Periods))
// Use user-configurable length for EMA
ema40 = ta.ema(close, emaLength)
ebc = input(false, title="Enable bar colors")
barcolor(ebc ? mdc : na)
conversionLinePlot = plot(conversionLine, color=#2962FF, title="Conversion Line", display=display.none)
baseLinePlot = plot(baseLine, color=#B71C1C, title="Base Line", display=display.none)
laggingSpanPlot = plot(close, offset=-displacement + 1, color=#43A047, title="Lagging Span", display=display.none)
leadLine1Plot = plot(leadLine1, offset=displacement - 1, color=#A5D6A7, title="Leading Span A", display=display.none)
leadLine2Plot = plot(leadLine2, offset=displacement - 1, color=#EF9A9A, title="Leading Span B", display=display.none)
kumoCloudUpperLinePlot = plot(leadLine1 > leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Upper Line", display=display.none)
kumoCloudLowerLinePlot = plot(leadLine1 < leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Lower Line", display=display.none)
fill(kumoCloudUpperLinePlot, kumoCloudLowerLinePlot, color=leadLine1 > leadLine2 ? color.green : color.red)
a = (leadLine1 > leadLine2 ? leadLine1 : leadLine2)
b = (leadLine1 < leadLine2 ? leadLine1 : leadLine2)
if mdc == colorCondition and ema40 > a[displacement - 1]
strategy.entry("Long", strategy.long)
if mdc == color.red and ema40 < b[displacement - 1]
strategy.entry("Short", strategy.short)