संसाधन लोड हो रहा है... लोड करना...

एमएसीडी-वी और फाइबोनैचि मल्टी टाइमफ्रेम डायनेमिक टेक प्रॉफिट रणनीति

लेखक:चाओझांग, दिनांकः 2024-04-26 12:00:21
टैगःएमएसीडीएमएसीडी-वीएटीआरईएमएएमए

img

अवलोकन

यह रणनीति कई समय सीमाओं में व्यापारिक निर्णय लेने के लिए एमएसीडी-वी (एटीआर अस्थिरता के साथ एमएसीडी) और फिबोनाची रिट्रेसमेंट का उपयोग करती है। यह विभिन्न समय सीमाओं पर एमएसीडी-वी और फिबोनाची स्तरों की गणना करती है, फिर यह तय करती है कि वर्तमान मूल्य के फिबोनाची स्तरों और एमएसीडी-वी के मूल्यों के संबंध में स्थिति खोलना या बंद करना है। रणनीति का उद्देश्य जोखिम को नियंत्रित करते हुए बाजार के रुझानों और रिट्रेसमेंट को पकड़ना है।

रणनीतिक सिद्धांत

  1. विभिन्न समय सीमाओं (जैसे, 5 मिनट और 30 मिनट) पर एमएसीडी-वी संकेतक की गणना करें। एमएसीडी-वी विभिन्न बाजार स्थितियों के अनुकूल होने के लिए मानक एमएसीडी में एटीआर अस्थिरता समायोजन को पेश करता है।
  2. एक उच्च समय सीमा (जैसे, 30 मिनट) पर, पिछले कुछ अवधियों (जैसे, 9 अवधियों) के उच्चतम उच्च और निम्नतम निम्न की गणना करें, फिर इस सीमा के आधार पर फाइबोनैचि रिट्रेसमेंट स्तरों की गणना करें।
  3. वर्तमान समापन मूल्य और फिबोनाची स्तरों के बीच संबंध के साथ-साथ एमएसीडी-वी के मूल्य और दिशा के आधार पर स्थिति खोलने का निर्धारण करें। उदाहरण के लिए, जब कीमत 38.2% फिबोनाची स्तर के आसपास वापस आती है और एमएसीडी-वी -50 और 150 के बीच नीचे की ओर बढ़ रहा है, तो एक छोटी स्थिति खोलें।
  4. एक स्थिति खोलने के बाद, लाभ की रक्षा और जोखिम को नियंत्रित करने के लिए एक ट्रैलिंग स्टॉप का उपयोग करें। मूल्य आंदोलन और रणनीति मापदंडों के आधार पर ट्रेलिंग स्टॉप की स्थिति को गतिशील रूप से समायोजित किया जाता है।
  5. यदि मूल्य ट्रेलिंग स्टॉप या फिक्स्ड स्टॉप लॉस स्तर को छूता है, तो स्थिति को बंद करें।

लाभ विश्लेषण

  1. रणनीति में बहु-समय-अंतराल विश्लेषण का उपयोग किया गया है, जो बाजार के रुझानों और उतार-चढ़ावों की अधिक व्यापक समझ प्रदान करता है।
  2. एमएसीडी-वी सूचक मूल्य अस्थिरता को ध्यान में रखता है, जिससे यह प्रवृत्ति और सीमांत बाजारों दोनों में प्रभावी होता है।
  3. फाइबोनैचि स्तर प्रभावी रूप से प्रमुख समर्थन और प्रतिरोध क्षेत्रों को पकड़ सकते हैं, व्यापार निर्णयों के लिए संदर्भ प्रदान कर सकते हैं।
  4. ट्रेलिंग स्टॉप्स प्रवृत्ति के निरंतरता के दौरान लाभप्रदता को जारी रखने की अनुमति देते हैं, जबकि मूल्य उलटों के दौरान समय पर स्थिति को बंद करते हैं, जोखिम को नियंत्रित करते हैं।
  5. रणनीतिक तर्क स्पष्ट है, मापदंड समायोज्य हैं और अनुकूलन क्षमता मजबूत है।

जोखिम विश्लेषण

  1. इस रणनीति में विभिन्न बाजारों में अक्सर व्यापार हो सकता है, जिससे उच्च लेनदेन लागत होती है।
  2. रुझानों का आकलन करने के लिए तकनीकी संकेतकों पर भरोसा करने से गलत आकलन हो सकता है जब बाजार में झूठे ब्रेकआउट या लंबे समय तक उतार-चढ़ाव होता है।
  3. फिक्स्ड स्टॉप लॉस पोजीशन चरम बाजार स्थितियों के लिए समय पर प्रतिक्रिया नहीं दे सकती है, जिससे महत्वपूर्ण नुकसान हो सकता है।
  4. अनुचित पैरामीटर चयन के परिणामस्वरूप खराब रणनीति प्रदर्शन हो सकता है।

अनुकूलन दिशाएँ

  1. प्रवृत्ति आकलन की सटीकता में सुधार के लिए अधिक समय सीमा और संकेतक, जैसे कि लंबी अवधि के एमए को पेश करना।
  2. स्थिति प्रबंधन को अनुकूलित करें, जैसे कि एटीआर या मूल्य सीमा के आधार पर स्थिति के आकार को गतिशील रूप से समायोजित करना।
  3. अनुकूलन क्षमता में सुधार के लिए विभिन्न बाजार स्थितियों के लिए अलग-अलग पैरामीटर संयोजन निर्धारित करें।
  4. नीचे की ओर जोखिम को बेहतर ढंग से नियंत्रित करने के लिए, ट्रेलिंग स्टॉप के अलावा, ट्रेलिंग स्टॉप हानि को पेश करें।
  5. सबसे अच्छा पैरामीटर संयोजन खोजने के लिए पैरामीटर का बैकटेस्ट और अनुकूलन करें।

सारांश

यह रणनीति कई समय सीमाओं में रुझानों और प्रवेश समय को निर्धारित करने के लिए एमएसीडी-वी और फिबोनाची रिट्रेसमेंट स्तरों का उपयोग करती है, और जोखिम और लाभ को गतिशील रूप से नियंत्रित करने के लिए ट्रेलिंग स्टॉप को नियोजित करती है। रणनीति तर्क स्पष्ट और अनुकूलन योग्य है, लेकिन रेंजिंग बाजारों में लगातार व्यापार और गलत आकलन जोखिम का अनुभव कर सकती है। अधिक संकेतकों को पेश करके, स्थिति प्रबंधन और स्टॉप लॉस तर्क को अनुकूलित करके, और मापदंडों को अनुकूलित करके, रणनीति की मजबूती और लाभप्रदता में और सुधार किया जा सकता है।

आभार

इस रणनीति में प्रयुक्त MACD-v संकेतक का श्रेय मूल निर्माता एलेक्स स्पाइरोग्लू को जाता है। अधिक जानकारी के लिए आप उनके काम का संदर्भ ले सकते हैंःMACD-v.


/*backtest
start: 2024-03-26 00:00:00
end: 2024-04-25 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © catikur

//@version=5
strategy("Advanced MACD-V and Fibonacci Strategy with EMA Trailing TP", overlay=true, default_qty_type = strategy.percent_of_equity, default_qty_value=1000, margin_long=1./10*50, margin_short=1./10*50, slippage=0, commission_type=strategy.commission.percent, commission_value=0.05)

// Parametreler
fast_len = input.int(12, title="Fast Length", minval=1, group="MACD-V Settings")
slow_len = input.int(26, title="Slow Length", minval=1, group="MACD-V Settings")
signal_len = input.int(9, title="Signal Smoothing", minval=1, group="MACD-V Settings")
atr_len = input.int(26, title="ATR Length", minval=1, group="MACD-V Settings")
source = input.source(close, title="Source", group="MACD-V Settings")

//ema_length = input.int(20, title="EMA Length for Trailing TP", group="Trailing TP Settings")
trailing_profit = input.float(1000, title="Trailing Profit", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings")
trailing_offset = input.float(30000, title="Trailing Offset", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings")
trailing_factor = input.float(0.01, title="Trailing Factor", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings")
fix_loss = input.float(20000, title="Fix Loss", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings")

fib_lookback = input.int(9, title="Fibonacci Lookback Periods", minval=1, group="Fibonacci Settings")

macd_tf = input.timeframe("5", title="MACD Timeframe", group="Timeframe Settings")
fib_tf = input.timeframe("30", title="Fibonacci Timeframe", group="Timeframe Settings")
//ema_tf = input.timeframe("30", title="EMA Timeframe for Trailing TP", group="Timeframe Settings")




// MACD-V Hesaplama
atr = ta.atr(atr_len)
ema_slow = ta.ema(source, slow_len)
ema_fast = ta.ema(source, fast_len)

atr_tf = request.security(syminfo.tickerid, macd_tf , atr)
ema_slow_tf = request.security(syminfo.tickerid, macd_tf , ema_slow)
ema_fast_tf = request.security(syminfo.tickerid, macd_tf , ema_fast)

macd = ( ema_fast_tf - ema_slow_tf ) / atr_tf * 100
signal = ta.ema(macd, signal_len)
hist = macd - signal
hist_prev = hist[1]

// log.info("MACD {0} ", macd)
// log.info("Signal {0} ", signal)
// log.info("Histogram {0} ", hist)
// log.info("Previous Histogram {0} ", hist_prev)

// EMA for Trailing TP
//ema_trailing_tf = ta.ema(close, ema_length)

//ema_trailing = request.security(syminfo.tickerid, ema_tf, ema_trailing_tf)

//log.info("EMA Trailing {0} ", ema_trailing)

// Fibonacci Seviyeleri

high_val_tf = ta.highest(high, fib_lookback)
low_val_tf = ta.lowest(low, fib_lookback)

h1 = request.security(syminfo.tickerid, fib_tf, high_val_tf)
l1 = request.security(syminfo.tickerid, fib_tf, low_val_tf)

fark = h1 - l1

//Low ile fark
hl236 = l1 + fark * 0.236
hl382 = l1 + fark * 0.382
hl500 = l1 + fark * 0.5
hl618 = l1 + fark * 0.618
hl786 = l1 + fark * 0.786
//High ile fark
lh236 = h1 - fark * 0.236
lh382 = h1 - fark * 0.382
lh500 = h1 - fark * 0.5
lh618 = h1 - fark * 0.618
lh786 = h1 - fark * 0.786

hbars_tf = -ta.highestbars(high, fib_lookback)
lbars_tf = -ta.lowestbars(low, fib_lookback)

hbars = request.security(syminfo.tickerid, fib_tf , hbars_tf)
lbars = request.security(syminfo.tickerid, fib_tf , lbars_tf)

fib_236 = hbars > lbars ? hl236 : lh236
fib_382 = hbars > lbars ? hl382 : lh382
fib_500 = hbars > lbars ? hl500 : lh500
fib_618 = hbars > lbars ? hl618 : lh618
fib_786 = hbars > lbars ? hl786 : lh786

// log.info("Fibo 382 {0} ", fib_382)
// log.info("Fibo 618 {0} ", fib_618)

// Keep track of the strategy's highest and lowest net profit
var highestNetProfit = 0.0
var lowestNetProfit  = 0.0

var bool sell_retracing = false
var bool sell_reversing = false
var bool buy_rebound = false
var bool buy_rallying = false

// Satış Koşulları
sell_retracing := (signal > -20) and (macd > -50 and macd < 150) and (macd < signal) and (hist < hist_prev) and (close < fib_382)
sell_reversing := (macd > -150 and macd < -50) and (macd < signal) and (hist < hist_prev) and (close < fib_618)

// log.info("Retracing var mi: {0} ", sell_retracing)
// log.info("Reversing var mi: {0} ", sell_reversing)

// Alım Koşulları
buy_rebound := (signal < 20) and (macd > -150 and macd < 50) and (macd > signal) and (hist > hist_prev) and ((fib_618 < close) or ((fib_618 > close ) and (close > fib_382)))
buy_rallying := (macd > 50 and macd < 150) and (macd > signal) and (hist > hist_prev) and (close > fib_618)

// log.info("Rallying var mi: {0} ", buy_rallying)
// log.info("Rebound var mi: {0} ", buy_rebound)

// Emirleri Yerleştirme
if (sell_retracing == true and strategy.opentrades == 0 )
    strategy.entry("sell_retracing", strategy.short)

if (sell_reversing == true and strategy.opentrades == 0 )
    strategy.entry("sell_reversing", strategy.short)

if (buy_rebound == true and strategy.opentrades == 0 )
    strategy.entry("buy_rebound", strategy.long)

if (buy_rallying == true and strategy.opentrades == 0 )
    strategy.entry("buy_rallying", strategy.long)


// log.info("open order: {0} ", strategy.opentrades )


highestNetProfit := math.max(highestNetProfit, strategy.netprofit)
lowestNetProfit  := math.min(lowestNetProfit, strategy.netprofit)




// Plot the net profit, as well as its highest and lowest value
//plot(strategy.netprofit, style=plot.style_area, title="Net profit",
//     color=strategy.netprofit > 0 ? color.green : color.red)

//plot(highestNetProfit, color=color.green, title="Highest net profit")
//plot(lowestNetProfit, color=color.red, title="Lowest net profit")

// Trailing Take Profit
//long_trailing_stop = ema_trailing * trailing_factor
//short_trailing_stop = ema_trailing / trailing_factor

//log.info("long trailing stop {0} ", long_trailing_stop)
//log.info("short trailing stop {0} ", short_trailing_stop)
//log.info("avg price {0} ", strategy.position_avg_price)
//trail_price1 = strategy.position_avg_price * (1 + trailing_factor)
//trail_price2 = strategy.position_avg_price * (1 - trailing_factor)
// log.info("position_size {0} ", strategy.position_size)

// Trailing Take Profit
var float long_trailing_stop = 0.0
var float short_trailing_stop = 0.0

//if (strategy.position_size > 0)
 //   long_trailing_stop := math.max(long_trailing_stop, close * (1 + trailing_factor))  // Yeni bir maksimum değer belirlendiğinde güncelle
//if (strategy.position_size < 0)
 //  short_trailing_stop := math.min(short_trailing_stop, close * (1 - trailing_factor))  // Yeni bir minimum değer belirlendiğinde güncelle

//log.info("long trailing {0} ", long_trailing_stop)
// log.info("trailing factor{0} ", trailing_factor)
//log.info("short trailing {0} ", short_trailing_stop)

if (strategy.position_size != 0 )
    strategy.exit("Exit Long", from_entry="buy_rebound", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss)
    strategy.exit("Exit Long", from_entry="buy_rallying", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss)
    strategy.exit("Exit Short", from_entry="sell_retracing", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss)
    strategy.exit("Exit Short", from_entry="sell_reversing", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss)

संबंधित

अधिक