Sumber daya yang dimuat... Pemuatan...

Hemat Opsi Delta untuk Bitcoin dengan Curve Senyum

Penulis:FMZ~Lydia, Dibuat: 2023-08-16 14:53:25, Diperbarui: 2023-09-18 20:17:37

Tingkat kenaikan keuntungan jauh lebih kecil, hanya antara 3,1% dan 7,6%.

Namun, untuk semua opsi lainnya, semua delta kurva senyum yang disesuaikan tidak sama dengan delta BS. Namun, ini tidak mengherankan, karena harga Bitcoin telah mengalami tren stabil selama sebagian besar tahun 2020. Hull dan White (2017) mengemukakan bahwa tingkat hedging HW yang sebenarnya dan Lee (2001) minim margin (MV) juga tidak meningkatkan delta BS. Salah satu kelemahan utama dari HW delta adalah bahwa ia menggunakan parameter regresi untuk memperkirakan nilai tukar, yang membuat asumsi distribusi yang independen tidak berlaku untuk aset yang sangat mudah mengalami lompatan keuntungan khusus ini. Pengaruh lompatan apa pun akan bertahan dalam jendela yang bergulir untuk waktu yang lama, sehingga MV memiliki pengaruh besar terhadap tingkat hedging HW.

Gambar 2 dan Gambar 5 menunjukkan bahwa tahun 2021 ditandai dengan harga yang lebih tinggi, fluktuasi yang lebih besar, peningkatan tingkat fluktuasi secara keseluruhan, serta munculnya kurva fluktuasi yang lebih datar namun masih tidak simetris. Sepanjang tahun 2021, harga Bitcoin sangat bervariasi antara $30,000 dan hampir $70,000, seperti yang ditunjukkan pada Gambar 2.

Selanjutnya, Tabel 3 dan Tabel 4 memeriksa stabilitas hasil Tabel 2 dalam dua cara: pertama dengan menganalisis ulang dengan frekuensi harian (Tabel 3) dan kemudian menggunakan kontrak abadi dan bukan masa depan yang sama sebagai alat hedging. Hasil Tabel 3 menunjukkan pola yang mirip dengan hasil Tabel 2, hanya tidak terlalu signifikan secara keseluruhan, tetapi ini tidak mengherankan karena sekarang hanya ada 365 observasi per tahun dan bukan 1095 observasi. Mereka mengkonfirmasi kesimpulan kami dari Tabel 2 bahwa delta dari kurva senyum yang tidak disesuaikan dapat meningkatkan deltaBS pada tahun 2021. Pada tahun 2020, kami juga melihat pola yang sama terhadap deltaBS, yaitu bahwa nilai delta ST benar-benar menunjukkan kinerja yang lebih baik pada masa depan ATM, tetapi ada beberapa data statistik yang menunjukkan bahwa nilai delta pada masa depan ATM dan nilai delta pada masa depan ATM jatuh pada nilai mata uang BSOM yang lebih baik, tetapi tidak ada perbedaan signifikan dalam semua ini.

Tabel 3. F - Hasil pemeriksaan hedging (dibalikkan setiap hari, tetap ke masa depan)

img

Catatan: Tingkat signifikansi dari perbandingan sisi dan tes F sisi tunggal untuk hipotesis nol, masing-masingimgDengan asumsi alternatifimgKita membandingkan selisih dari kesalahan delta-hedging yang berbeda dengan selisih dari penggunaan BS-delta-hedging, dan membagi sampel dua tahun. Kita menggunakan tiga opsi dengan tiga periode berbeda, dari 0.7 hingga 1.3 dengan nilai moneter, dengan OTM-bearing option <1 dengan nilai moneter, dengan OTM-seeing option >1 dengan nilai moneter. Untuk H, digunakan, masing-masing, dan menunjukkan tingkat signifikansi 10%, 5% dan 1%, H+ sama.

Tabel 4. F - Hasil pemeriksaan hedging ((8 jam rebalancing, kontrak permanen) ⇒

img

Catatan: Tingkat signifikansi dari perbandingan sisi dan tes F sisi tunggal untuk hipotesis nol, masing-masingimgDengan asumsi alternatifimgKita membandingkan selisih dari kesalahan delta-hedging yang berbeda dengan selisih dari penggunaan BS-delta-hedging, dan membagi sampel dua tahun. Kita menggunakan tiga opsi dengan tiga periode berbeda, dari 0.7 hingga 1.3 dengan nilai moneter, dengan OTM-bearing option <1 dengan nilai moneter, dengan OTM-seeing option >1 dengan nilai moneter. Untuk H, digunakan, masing-masing, dan menunjukkan tingkat signifikansi 10%, 5% dan 1%, H+ sama.

Tabel 4 menggunakan frekuensi rebalancing 8-jam yang sama dengan Tabel 2 untuk analisis, tetapi untuk semua opsi menggunakan kontrak permanen sebagai alat hedging. Kita melihat pola delta BS yang sama dengan Tabel 2 yang tidak baik, peningkatan efisiensi sangat signifikan untuk menggunakan kurva senyum yang tersirat (misalnya SM) delta dan opsi ATM yang tersirat (misalnya ST/MV delta) untuk hedging opsi OTM belasan. Selain kurva senyum yang tersirat (misalnya SM) delta untuk hedging opsi OTM 10 hari sekali lagi menghasilkan keuntungan efisiensi yang signifikan.

Untuk menjawab pertanyaan ini, kami mempelajari rasio perbedaan, di mana molekulnya adalah rasio perbedaan dari kesesuaian nilai dari futures dengan jangka waktu yang sama, dan divisornya adalah rasio perbedaan dari kesesuaian nilai dari futures dengan jangka waktu yang sama. Kami membagi sampel lagi menjadi dua periode satu tahun, dan mendistribusikan hasilnya berdasarkan delta (sekarang termasuk BS delta) dan opsi, dan Tabel 5 menunjukkan hasilnya. Dalam tabel, rasio perbedaan yang lebih kecil dari sekitar 1 menunjukkan bahwa perbandingan yang lebih baik dapat diperoleh dengan menggunakan kontrak permanen.

Tabel 5. Pemeriksaan F-test kontras berjangka dengan jangka panjang (mengimbangi kembali setiap 8 jam).

img

Catatan: Tingkat signifikansi dari perbandingan sisi dan tes F sisi tunggal untuk hipotesis nol, masing-masingimgDengan asumsi alternatifimgKita membandingkan selisih dari kesalahan delta-hedging yang berbeda dengan selisih dari penggunaan BS-delta-hedging, dan membagi sampel dua tahun. Kita menggunakan tiga opsi dengan tiga periode berbeda, dari 0.7 hingga 1.3 dengan nilai moneter, dengan OTM-bearing option <1 dengan nilai moneter, dengan OTM-seeing option >1 dengan nilai moneter. Untuk H, digunakan, masing-masing, dan menunjukkan tingkat signifikansi 10%, 5% dan 1%, H+ sama.

Meskipun tabel hasil memberikan efisiensi relatif keseluruhan dari delta yang disesuaikan dengan kurva senyum yang berbeda, namun sampel dua tahun kami mencakup berbagai sistem pasar. Seperti yang ditunjukkan pada Gambar 5, pasar Bitcoin bergeser cepat antara tren stabil, goyah interval, dan ribut jatuh. Oleh karena itu, untuk membantu memahami delta mana yang paling baik dalam kondisi pasar mana, Gambar 8 menggambarkan urutan rasio waktu, yaitu perbedaan dari delta yang disesuaikan dengan kurva senyum dengan perbedaan dari delta yang disesuaikan dengan kurva senyum.

Gambar 8. Kinerja hedging dari sampel bergulir. (*) Hasil opsi 10 hari dan (b) hasil opsi 30 hari.

Perbedaan rasio menunjukkan kinerja berbagai rasio hedging opsi permanen terhadap delta BS, dengan rebalancing setiap 8 jam, di mana rasio hedging error dihitung dengan menggunakan 90 observasi awal. Kami mencantumkan hasil logaritma untuk (a) periode 10 hari dan (b) periode 30 hari dalam sampel dua tahun. Garis 0 adalah referensi, rasio lebih besar dari 0 menunjukkan kinerja yang lebih buruk terhadap BS, dan rasio yang lebih kecil dari 0 menunjukkan kinerja yang lebih baik terhadap BS. Gambar di atas menggambarkan kinerja opsi OTM naik dengan m = 0.8, sedangkan grafik di atas (b) menunjukkan kinerja opsi OTM turun dengan m = 0.7, dan grafik mediasi menunjukkan kinerja opsi ATM pada (a) dan (b) dan grafik di bawah menunjukkan kinerja opsi OTM 1.2 (b) dan opsi OTM 3 (c).

img

Tiga grafik di atas menunjukkan hasil opsi 10 hari, dan tiga grafik di bawah menunjukkan hasil opsi 30 hari. Dalam setiap kasus (a) dan (b), grafik di atas adalah opsi OTM penurunan, dan grafik ini menegaskan hasil dari performa 2: hampir sepanjang periode, ST (blue) dan MV (green) dari delta tidak baik, keduanya berada di bawah BS; sesuai dengan perkiraan Derman pada tahun 1999 dari klasifikasi pasar, SM delta juga tidak meningkat dibandingkan dengan delta pada periode dengan keterbatasan interval pasar, tetapi ketika pasar memiliki tren, seperti pada bull market pertama yang dimulai pada bulan Januari 2021 dan bull market kedua yang berlangsung di akhir tahun yang sama, sedangkan delta tidak seperti SMBS delta; performa delta biasanya berbeda dari periode manapun. Setiap kelompok menunjukkan tingkat performa yang sama terhadap timbal balik timbal balik timbal balik timbal balik timbal balik timbal balik.

7. Kesimpulan

Penelitian empiris sebelumnya hanya dilakukan pada opsi indeks saham tanpa model untuk mengamati implikasi kurva senyum dan sistem yang bergantung pada penyesuaian kurva senyum. Meskipun hasilnya berbeda-beda, kesimpulan umum adalah bahwa rasio penyesuaian kurva senyum hanya dalam beberapa kasus dapat meningkatkan kinerja delta Black-Scholes untuk opsi penurunan nilai nol. Tetapi kami telah menunjukkan bahwa kinerja kurva senyum implikasi volatilitas Bitcoin sangat berbeda dari opsi indeks saham, sehingga efektivitas rasio penyesuaian kurva senyum yang sering disukai oleh para praktisi penelitian sangat berarti.

Kami mendorong penggunaan berbagai potensi penggunaan delta yang disesuaikan, yang sebagian besar hanya bergantung pada hubungan faktual opsi dan slope dari kurva senyum volatilitas yang tersirat pada waktu kadaluarsa. Dengan menggunakan dataset unik opsi Deribit, kami dapat membandingkan efek hedging opsi bitcoin yang paling aktif di bursa Deribit, dengan harga hak langsung berfluktuasi 30% di bawah indeks BTC saat ini, dan opsi dengan masa kadaluarsanya paling lama satu bulan. Kami menganalisis selisih dari kesalahan hedging delta, di mana instrumen hedging dapat menjadi kontrak mata uang dengan hasil yang sama pada waktu kadaluarsanya, atau juga kontrak perpetual. Ini adalah produk inovatif yang unik di pasar derivatif cryptocurrency. Kami membandingkan beberapa perbedaan yang sangat singkat dengan beberapa orang lain, seperti Alexander Vähman (2004 atau 2011) dan Alexander Vähman.

Dengan metode ini, kami menunjukkan bahwa untuk opsi nirkabel, efek hedging dari delta "smile curve" yang tersirat ("slip monetary") secara signifikan lebih baik daripada delta Black-Scholes standar, dengan peningkatan efisiensi lebih dari 40% dalam beberapa kasus. Delta "minimal" juga lebih baik daripada delta "BS", tetapi hanya terbatas pada opsi dalam harga karena bersesuaian dengan delta "sticky tree". Tidak ada delta lain yang disesuaikan dengan kurva "smile" yang dapat terus meningkatkan delta "BS", bahkan untuk sebagian besar tahun 2021.

Penelitian kami terutama berfokus pada kerangka kerja model-tidak stabil, yang juga merupakan pilihan utama bagi banyak praktisi. Kami tidak mempertimbangkan untuk melakukan hedging dengan menggunakan model random dan/atau volatilitas lokal parameter apa pun, karena sederhana, stabilitas skala dari proses ini berarti delta sebenarnya tidak memiliki model, dan oleh karena itu dengan senyum yang digunakan dalam penelitian ini menyiratkan overlap delta. Karena kami telah memperkenalkan delta defisiensi minimal yang stabil dari Lee (2001) dalam penelitian kami, kami menganggap bahwa menambahkan proses volatilitas random yang berbeda untuk perdagangan dinamis delta hedging adalah masalah penelitian yang tidak terlalu relevan dengan industri crypto saat ini.

Artikel ini berfokus pada penghematan delta dinamis yang sering rebalancing, yang mungkin membantu pedagang opsi bitcoin untuk mendapatkan keunggulan kompetitif di pasar yang baru mulai benar-benar matang pada tahun 2021. Namun, pasar bitcoin berkembang dengan sangat cepat sehingga pedagang profesional besar seperti Jump Trading, Jane Street, XBTO, dan Cumberland DRW sedang melakukan perdagangan opsi bitcoin, dengan volume perdagangan yang biasanya mencapai lebih dari satu miliar dolar per hari. Banyak opsi baru yang jatuh tempo dan ukuran kontrak opsi juga terus diluncurkan untuk memenuhi permintaan, misalnya, CME baru-baru ini meluncurkan periode bitcoin yang ditujukan untuk perdagangan ritel. Namun, perbedaan harga jual opsi bitcoin masih relatif besar, jauh lebih rendah daripada periode khusus atau kontrak pasar jangka panjang. Oleh karena itu, pasar opsi bitcoin mungkin lebih bergantung pada kemampuan untuk mempertahankan keuntungan dari harga modal yang lebih akurat.

Pernyataan

Kami ingin mengucapkan terima kasih kepada para pengulas anonim yang telah memberikan komentar yang membuat artikel ini menjadi lebih baik.

Pengungkapan

Penulis menyatakan bahwa tidak ada konflik kepentingan.

Catatan tambahan

  1. Sebaliknya, delta yang diperoleh dari model tak-skala (seperti model fluktuasi lokal Dupire (1994) atau model pohon lengket Derman dan Kani (1994)) tidak secara teoritis sama dengan delta tak-skala.

  2. Sebagai contoh, kita bisa melihat beberapa contoh terbaru.Artikel CAIAArtikel lain di MediumArtikeldanRiskalattedanStackexchangeDi sini ada beberapa forum keuangan kuantitatif.

  3. Dalam bagian ini, Nastasi et al. (2020) mengkalibrasi model konsistensi senyum yang berlaku untuk opsi komoditas untuk menangkap dinamika senyum, sementara Malz (2000) menjelaskan bagaimana mempertimbangkan penyesuaian senyum ketika mengukur risiko opsi FX.

  4. Opsi Deribit memiliki kematiannya dua hari, dua minggu, dua bulan, dan triwulanan, dengan durasi hingga 9 atau 12 bulan. Indeksnya adalah Deribit BTC Index, yang merupakan rata-rata ekuitas harga Bitcoin terbaru di 11 bursa, tidak termasuk harga tertinggi dan terendah, dan sisanya digunakan untuk menghitung indeks. Saat ini, bursa-bursa ini termasuk Coinbase Pro, Gemini, Huobi Global, Itbit, Kraken, LMAX Digital, dan OKEx. Indeks ini diperbarui setiap detik.Dokumen Spesifikasi Opsi DeribitUntuk opsi jangka pendek, rentang eksekusinya berkisar antara 50% dan 150% dari harga BTC saat ini, untuk opsi jangka panjang lebih dari 6 bulan, rentang eksekusinya mencapai 800% dari harga BTC saat ini.

  5. Lihat jugaData opsi sejarah CBOEUntuk mengetahui volume perdagangan opsi SPX di CBOE.

  6. Lihat jugaVolume perdagangan opsi BitcoindanOpsi Bitcoin Goldman Sachs

  7. Setelah itu CME (5%), OKEx (2,5%), dan lain-lain.以及FTX和Bit.comUntuk informasi lebih lanjut, lihat:Opsi Blok

  8. Untuk menghitung hasil akhir, Deribit menggunakan rata-rata indeks BTC 30 menit sebelum jatuh tempo sebagai nilai penyelesaian.Dokumen Spesifikasi Opsi Deribit◦ Perlu dicatat bahwa pasar opsi Bitcoin Deribit tidak lengkap ◦ Indeks itu sendiri tidak dapat diperdagangkan, membutuhkan replikasi yang mahal dan rebalancing yang sering ◦ Pasar tidak lengkap bagi para pedagang karena kurangnya informasi tentang perhitungan nilai penyelesaian yang akurat. Namun, diskusi rinci tentang masalah ini berada di luar lingkup artikel ini, dan kami menyarankan referensi Alexander et al. (2022a) untuk diskusi yang lebih mendalam.

  9. Lihat juga: 2022Pasar cryptocurrency terpusat tahun laluPeringkat.

  10. Futures reverse adalah kontrak futures yang berbiaya bitcoin berdasarkan harga dolar bitcoin atau nilai indeks bitcoin. Untuk futures standar dan reverse, keduanya menggunakan nilai dolar sebagai indikator, tetapi perbedaannya adalah dalam cara penyelesaian: nominal CME adalah 0,1 atau 5 bitcoin dan dibayarkan dalam dolar, sedangkan nominal reverse adalah $1 atau $10 dan dibayarkan dalam dolar. Pada sisi lain, mekanisme pembayaran ini menghasilkan kerugian yang berbeda dalam perhitungan PnL. Untuk futures standar, harga awal futures perlu dikurangi dari indeks, dan hasilnya akan dikalikan dengan nilai nominal, sehingga menghasilkan pegangan kerugian dalam perhitungan dolar.

  11. Lihat juga:Deribit Tingkat Modal TetapUntuk informasi lebih lanjut, lihat deskripsi dari Deribit tentang perhitungan suku bunga.

  12. Lihat juga:BlokatauCoinglassNamun, kami mengabaikan banyak bursa yang secara artifisial meningkatkan volume perdagangan mereka karena melakukan pencucian uang.

  13. Coleman et al. (2001) dan banyak karya lainnya juga menganjurkan pendekatan pendekatan ini.

  14. Derman (1999) menyebut model SS sebagai replikasi model BS dengan pohon fluktuasi yang tersirat.

  15. Kecuali opsi penurunan nilai nol yang sangat dalam (m = 0.7) dan opsi kenaikan nilai (m = 1.3), opsi-opsi ini tidak memiliki volume perdagangan yang cukup dalam kategori tanggal kedaluwarsa pendek. Kami hanya dapat menghitung harga komposit selama 75% dari waktu, sehingga kami tidak memasukkan opsi-opsi ini dalam hasil akhir kami.

  16. Tentu saja, setiap level PCP akan berbeda. Karena perdagangan biasanya terpusat pada opsi ATM, sulit untuk menemukan level PCP ITM/OTM yang memiliki opsi bullish dan bearish yang aktif pada saat yang sama, jadi kami menggunakan nilai PCP yang diperoleh dari opsi ATM. Kami memasukkan dua nilai PCP ATM pada tanggal kedaluwarsa yang berdekatan, dan menggunakan nilai-nilai ini untuk mendapatkan harga opsi periodik yang tersusun.

  17. Sebagai contoh, karena kita selalu memegang kontrak permanen dalam konstruksi, ketika margin kontrak permanen benar, para hedger perlu membayar biaya dana, dan ketika margin negatif, para hedger menerima biaya dana. Sebaliknya untuk posisi opsi multi-head hedging. Bagaimanapun, dari Gambar 7, kita dapat melihat bahwa margin kontrak permanen bervariasi, kadang-kadang positif, kadang-kadang negatif. Menulis algoritma hedging untuk sepenuhnya keluar dari posisi hedge sebelum biaya dana berakhir tidak sulit, tetapi tidak akan keluar jika posisi hedge akan menerima biaya dana.

  18. Untuk opsi ATM, ST dan MV delta adalah sama, sehingga hasilnya sama, tetapi terbatas pada hal ini.

Referensi

  1. Alexander, C., Pricing, Hedging and Trading Financial Instruments. Analisis Risiko Pasar III, 2008 (Wiley).[Google Scholar]

  2. Alexander, C. dan Nogueira, L., Rasio lindung nilai bebas model dan model invarian skala.[Crossref], [Web of Science ®], [Google Scholar]

  3. Alexander, C. dan Nogueira, L., Rasio lindung nilai harga bebas model untuk klaim homogen atas aset yang dapat diperdagangkan.[Taylor & Francis Online], [Web of Science ®], [Google Scholar]

  4. Alexander, C., Rubinov, A., Kalepky, M. dan Leontsinis, S., Regime-dependent smile-adjusted delta hedging. J. Futures Mark., 2012, 32(3), 203229.[Crossref], [Web of Science ®], [Google Scholar]

  5. Alexander, C., Chen, D. dan Imeraj, A., Pilihan terbalik dan kuantum terbalik dalam dunia BlackScholes.[Crossref], [Google Scholar]

  6. Alexander, C., Deng, J., Feng, J. dan Wan, H., Tekanan pembelian bersih dan informasi dalam perdagangan opsi bitcoin.[Crossref], [Google Scholar]

  7. Attie, L., Kinerja lindung nilai delta yang tersirat senyum.[Google Scholar]

  8. Bakshi, G., Cao, C. dan Chen, Z., Kinerja empiris dari model harga opsi alternatif.[Crossref], [Web of Science ®], [Google Scholar]

  9. Bates, D., Hedging the smirk. Finance Res. Lett., 2005, 2 ((4), 195200.[Crossref], [Google Scholar]

  10. Black, F. dan Scholes, M., Harga opsi dan kewajiban perusahaan. J. Polit. Econ., 1973, 81 (((3), 637654.[Crossref], [Web of Science ®], [Google Scholar]

  11. Bliss, R. dan Panigirtzoglou, N., Uji stabilitas fungsi kepadatan probabilitas tersirat. J. Bank. Keuangan, 2002, 26(2-3), 381422.[Crossref], [Web of Science ®], [Google Scholar]

  12. Chen, K. dan Huang, Y., Deteksi risiko lompatan dan model penyebaran lompatan untuk penetapan harga dan lindung nilai opsi bitcoin.[Crossref], [Google Scholar]

  13. Chi, Y. dan Hao, W., Model Volatilitas untuk cryptocurrency dan aplikasi di pasar opsi. J. Int. Financ. Mark I., 2021, 75, 101421.[Crossref], [Google Scholar]

  14. Coleman, T., Kim, Y., Li, Y. dan Verma, A., lindung nilai dinamis dengan model fungsi volatilitas lokal deterministik.[Taylor & Francis Online], [Google Scholar]

  15. CryptoCompare, Tinjauan Bursa. September 2022, 2022.[Google Scholar]

  16. Crépey, S., Delta-hedging vega risk?. Quant. Finance, 2004, 4 ((5), 559579.[Taylor & Francis Online], [Web of Science ®], [Google Scholar]

  17. Derman, E., Rezim volatilitas. Risiko, 1999, 12 ((4), 5559.[Google Scholar]

  18. Derman, E. dan Kani, I., Senyum volatilitas dan pohon yang tersirat.[Google Scholar]

  19. Derman, E., Kani, I. dan Zou, J., The local volatility surface: Unlocking the information in index option prices.[Taylor & Francis Online], [Google Scholar]

  20. Duffie, D., Pan, J. dan Singleton, K., Analisis transformasi dan penetapan harga aset untuk difusi lompatan affine.[Crossref], [Web of Science ®], [Google Scholar]

  21. Dupire, B, Pricing with a smile. Risk Mag., 1994, 7 (((1), 1820.[Google Scholar]

  22. Fengler, M., Penghalusan tanpa arbitrase dari permukaan volatilitas tersirat.[Taylor & Francis Online], [Web of Science ®], [Google Scholar]

  23. François, P. dan Stentoft, L., Smile-implied hedging dengan risiko volatilitas. J. Futures Mark., 2021, 41 ((8), 12201240.[Crossref], [Google Scholar]

  24. Hou, A., Wang, W., Chen, C. dan Härdle, W., Pricing cryptocurrency options. J. Financ. Econom., 2020, 18(2), 250279.[Web of Science ®], [Google Scholar]

  25. Hull, J. dan White, A., lindung nilai delta optimal untuk opsi. J. Bank. Keuangan, 2017, 17, 180190.[Crossref], [Google Scholar]

  26. Jalan, A., Matkovskyy, R. dan Aziz, S., Pasar opsi bitcoin: Sebuah pandangan pertama tentang harga dan risiko.[Taylor & Francis Online], [Google Scholar]

  27. Lee, R., Implisit dan volatilitas lokal di bawah volatilitas stokastik.[Crossref], [Google Scholar]

  28. Malz, A., Perkiraan distribusi probabilitas nilai tukar masa depan dari harga opsi.[Crossref], [Google Scholar]

  29. Malz, A., Vega risiko dan senyum.[Crossref], [Google Scholar]

  30. Matic, J., Packham, N. dan Härdle, W., Hedging opsi cryptocurrency. SSRN Working Paper, 2021.[Crossref], [Google Scholar]

  31. McNeil, A. dan Frey, R., Perkiraan ukuran risiko terkait ekor untuk deret waktu keuangan heteroskedastik: Pendekatan nilai ekstrim. J. Empir. Finance, 2000, 7 (((3), 271300.[Crossref], [Google Scholar]

  32. Nastasi, E., Pallavicini, A. dan Sartorelli, G., Smile modeling di pasar komoditas.[Crossref], [Google Scholar]

  33. Sauer, B., Mata uang virtual, pasar uang, dan kebijakan moneter.[Crossref], [Google Scholar]

  34. Siu, T.K. dan Elliott, R., Harga opsi Bitcoin dengan model SETRA-GARCH.[Taylor & Francis Online], [Web of Science ®], [Google Scholar]

  35. Vähämaa, S., Delta lindung nilai dengan senyum.[Crossref], [Google Scholar]

Artikel ini berasal dari:https://www.tandfonline.com/doi/full/10.1080/14697688.2023.2181205


Berkaitan

Lebih banyak