Strategi ini menggabungkan model jaringan saraf, indikator RSI dan indikator Super Trend untuk perdagangan.
Logikanya adalah:
Membangun model jaringan saraf dengan input termasuk perubahan volume, Bollinger Bands, RSI dll.
Jaringan memprediksi tingkat perubahan harga di masa depan
Menghitung nilai RSI dan menggabungkan dengan perubahan harga yang diprediksi
Membuat garis stop loss dinamis berdasarkan RSI
Pergi pendek ketika harga pecah di atas stop loss; pergi panjang ketika harga pecah di bawah stop down
Gunakan penilaian tren Super Trend untuk penyaringan
Strategi ini memanfaatkan kemampuan jaringan saraf untuk memodelkan data yang kompleks, dengan verifikasi sinyal tambahan dari indikator seperti RSI dan Super Trend untuk meningkatkan akurasi sambil mengendalikan risiko.
Jaringan saraf memodelkan data multidimensional untuk menentukan tren
RSI berhenti melindungi keuntungan, Super Trend membantu penilaian
Beberapa indikator digabungkan untuk meningkatkan kualitas sinyal
Membutuhkan dataset besar untuk pelatihan jaringan saraf
Perbaikan parameter RSI dan Super Trend diperlukan
Kinerja tergantung pada prediksi model, ada ketidakpastian
Strategi ini menggabungkan pembelajaran mesin dengan teknik tradisional untuk efisiensi dengan pengendalian risiko.
/*backtest start: 2023-08-14 00:00:00 end: 2023-09-13 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/ //it only work for BTC as the ANN is trained for this data only //super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/ // Strategy version created for @che_trader strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true) qty = input(10000, "Buy quantity") testStartYear = input(2019, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testStartHour = input(0, "Backtest Start Hour") testStartMin = input(0, "Backtest Start Minute") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin) testStopYear = input(2099, "Backtest Stop Year") testStopMonth = input(1, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) testPeriod() => true max_bars_back = (21) src = close[0] // Essential Functions // Highest - Lowest Functions ( All efforts goes to RicardoSantos ) f_highest(_src, _length)=> _adjusted_length = _length < 1 ? 1 : _length _value = _src for _i = 0 to (_adjusted_length-1) _value := _src[_i] >= _value ? _src[_i] : _value _return = _value f_lowest(_src, _length)=> _adjusted_length = _length < 1 ? 1 : _length _value = _src for _i = 0 to (_adjusted_length-1) _value := _src[_i] <= _value ? _src[_i] : _value _return = _value // Function Sum f_sum(_src , _length) => _output = 0.00 _length_adjusted = _length < 1 ? 1 : _length for i = 0 to _length_adjusted-1 _output := _output + _src[i] // Unlocked Exponential Moving Average Function f_ema(_src, _length)=> _length_adjusted = _length < 1 ? 1 : _length _multiplier = 2 / (_length_adjusted + 1) _return = 0.00 _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1] // Unlocked Moving Average Function f_sma(_src, _length)=> _output = 0.00 _length_adjusted = _length < 0 ? 0 : _length w = cum(_src) _output:= (w - w[_length_adjusted]) / _length_adjusted _output // Definition : Function Bollinger Bands Multiplier = 2 _length_bb = 20 e_r = f_sma(src,_length_bb) // Function Standard Deviation : f_stdev(_src,_length) => float _output = na _length_adjusted = _length < 2 ? 2 : _length _avg = f_ema(_src , _length_adjusted) evar = (_src - _avg) * (_src - _avg) evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted) _output := sqrt(evar2) std_r = f_stdev(src , _length_bb ) upband = e_r + (Multiplier * std_r) // Upband dnband = e_r - (Multiplier * std_r) // Lowband basis = e_r // Midband // Function : RSI length = input(14, minval=1) // f_rma(_src, _length) => _length_adjusted = _length < 1 ? 1 : _length alpha = _length_adjusted sum = 0.0 sum := (_src + (alpha - 1) * nz(sum[1])) / alpha f_rsi(_src, _length) => _output = 0.00 _length_adjusted = _length < 0 ? 0 : _length u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change rs = f_rma(u, _length) / f_rma(d, _length) res = 100 - 100 / (1 + rs) res _rsi = f_rsi(src, length) // MACD _fastLength = input(12 , title = "MACD Fast Length") _slowlength = input(26 , title = "MACD Slow Length") _signalLength = input(9 , title = "MACD Signal Length") _macd = f_ema(close, _fastLength) - f_ema(close, _slowlength) _signal = f_ema(_macd, _signalLength) _macdhist = _macd - _signal // Inputs on Tangent Function : tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) // Deep Learning Activation Function (Tanh) : ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v)) // DEEP LEARNING // INPUTS : input_1 = tangentdiff(volume) input_2 = tangentdiff(dnband) input_3 = tangentdiff(e_r) input_4 = tangentdiff(upband) input_5 = tangentdiff(_rsi) input_6 = tangentdiff(_macdhist) // LAYERS : // Input Layers n_0 = ActivationFunctionTanh(input_1 + 0) n_1 = ActivationFunctionTanh(input_2 + 0) n_2 = ActivationFunctionTanh(input_3 + 0) n_3 = ActivationFunctionTanh(input_4 + 0) n_4 = ActivationFunctionTanh(input_5 + 0) n_5 = ActivationFunctionTanh(input_6 + 0) // Hidden Layers n_6 = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 + 0.221093) n_7 = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 + 0.019450 * n_2 + 0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) n_8 = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 + 1.633836 * n_3 + 6.099666 * n_4 + 3.509443 * n_5 + -4.384254) n_9 = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) n_10 = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 + 3.655614 * n_2 + 1.051512 * n_3 + -2.763198 * n_4 + 6.062295 * n_5 + -6.367982) n_11 = ActivationFunctionTanh( 1.246882 * n_0 + -1.993206 * n_1 + 1.599518 * n_2 + 1.871801 * n_3 + 0.294797 * n_4 + -0.607512 * n_5 + -3.092821) n_12 = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) n_13 = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) // Output Layer _output = ActivationFunctionTanh(2.588784 * n_6 + 0.100819 * n_7 + -5.305373 * n_8 + 1.167093 * n_9 + 3.770143 * n_10 + 1.269190 * n_11 + 2.090862 * n_12 + 0.839791 * n_13 + -0.196165) _chg_src = tangentdiff(src) * 100 _seed = (_output - _chg_src) // BEGIN ACTUAL STRATEGY length1 = input(title="RSI Period", type=input.integer, defval=21) mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0) wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false) showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true) srsi = mult* rsi(_seed ,length1) longStop = hl2 - srsi longStopPrev = nz(longStop[1], longStop) longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop shortStop = hl2 + srsi shortStopPrev = nz(shortStop[1], shortStop) shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop dir = 1 dir := nz(dir[1], dir) dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir longColor = color.green shortColor = color.red plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor) buySignal = dir == 1 and dir[1] == -1 plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0) plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0) plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor) sellSignal = dir == -1 and dir[1] == 1 plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0) plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0) if testPeriod() and buySignal strategy.entry("Long",strategy.long) if testPeriod() and sellSignal strategy.entry("Short",strategy.short)