双方向移動平均逆転取引戦略 (Bidirectional Moving Average Reversion Trading Strategy) は,価格平均逆転理論に基づいた定量的な取引戦略である.この戦略は,複数の移動平均を設定し,価格が移動平均から大幅に逸脱すると市場に参入し,戻ると退場することで価格逆転の機会を捉える.
この戦略の核心理念は価格平均逆転である.これは,価格が平均値の周りに変動し,平均値から偏りすぎると逆転する可能性が高いことを示唆する.具体的には,この戦略は,エントリー移動平均値,出口移動平均値,ストップ損失移動平均値の3つのグループを設定する.価格がエントリー移動平均値に達すると対応するロングまたはショートポジションを開く.価格が出口移動平均値に達すると閉鎖ポジション,価格が逆転せずにトレンドを継続した場合にストップ損失移動平均値で損失を制御する.
コード論理の観点から,順番に速い移動平均と遅い移動平均からなる2つのエントリー移動平均 - ロングとショートがあります.それらの間と価格の偏差がポジションサイズを決定します.また,出口移動平均は,ポジションを閉じるときをシグナルする別々の移動平均です.価格がこのラインに当たると,既存のポジションは平坦化されます.
双方向移動平均逆転戦略の主な利点は以下の通りである.
この戦略は,価格変動が比較的小さい低波動性楽器で,特にレンジ・バインドサイクルに入るときにうまく機能します.一時的な価格逆転からの機会を効果的に把握できます.一方,リスク制御対策はかなり包括的で,価格が戻らない場合でも合理的な範囲内で損失を制限します.
この戦略にはいくつかのリスクもあります.
上記のリスクを軽減する方法は以下の通りです.
また,この戦略をさらに最適化するには十分な余地があります.
双方向移動平均逆転取引戦略は,移動平均レベルからの重大な偏差後に価格逆転から利益を得ることを目的としている.適切なリスク管理措置により,パラメータ調整を通じて一貫した利益を達成することができる.トレンドを追いかけるリスクや過度の変動などのリスクはまだ存在しているが,エントリーロジックを改善し,ポジションサイズを減らすなどにより対処できる.この理解しやすい戦略は定量的なトレーダーからのさらなる研究と最適化に値する.
/*backtest start: 2023-12-15 00:00:00 end: 2024-01-14 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title = "hamster-bot MRS 2", overlay = true, default_qty_type = strategy.percent_of_equity, initial_capital = 100, default_qty_value = 30, pyramiding = 1, commission_value = 0.1, backtest_fill_limits_assumption = 1) info_options = "Options" on_close = input(false, title = "Entry on close", inline=info_options, group=info_options) OFFS = input.int(0, minval = 0, maxval = 1, title = "| Offset View", inline=info_options, group=info_options) trade_offset = input.int(0, minval = 0, maxval = 1, title = "Trade", inline=info_options, group=info_options) use_kalman_filter = input.bool(false, title="Use Kalman filter", group=info_options) //MA Opening info_opening = "MA Opening Long" maopeningtyp_l = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening, group=info_opening) maopeningsrc_l = input.source(ohlc4, title = "", inline=info_opening, group=info_opening) maopeninglen_l = input.int(3, minval = 1, title = "", inline=info_opening, group=info_opening) long1on = input(true, title = "", inline = "long1") long1shift = input.float(0.96, step = 0.005, title = "Long", inline = "long1") long1lot = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "long1") info_opening_s = "MA Opening Short" maopeningtyp_s = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening_s, group=info_opening_s) maopeningsrc_s = input.source(ohlc4, title = "", inline=info_opening_s, group=info_opening_s) maopeninglen_s = input.int(3, minval = 1, title = "", inline=info_opening_s, group=info_opening_s) short1on = input(true, title = "", inline = "short1") short1shift = input.float(1.04, step = 0.005, title = "short", inline = "short1") short1lot = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "short1") //MA Closing info_closing = "MA Closing" maclosingtyp = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_closing, group=info_closing) maclosingsrc = input.source(ohlc4, title = "", inline=info_closing, group=info_closing) maclosinglen = input.int(3, minval = 1, maxval = 200, title = "", inline=info_closing, group=info_closing) maclosingmul = input.float(1, step = 0.005, title = "mul", inline=info_closing, group=info_closing) startTime = input(timestamp("01 Jan 2010 00:00 +0000"), "Start date", inline = "period") finalTime = input(timestamp("31 Dec 2030 23:59 +0000"), "Final date", inline = "period") HMA(_src, _length) => ta.wma(2 * ta.wma(_src, _length / 2) - ta.wma(_src, _length), math.round(math.sqrt(_length))) EHMA(_src, _length) => ta.ema(2 * ta.ema(_src, _length / 2) - ta.ema(_src, _length), math.round(math.sqrt(_length))) THMA(_src, _length) => ta.wma(ta.wma(_src,_length / 3) * 3 - ta.wma(_src, _length / 2) - ta.wma(_src, _length), _length) tema(sec, length)=> tema1= ta.ema(sec, length) tema2= ta.ema(tema1, length) tema3= ta.ema(tema2, length) tema_r = 3*tema1-3*tema2+tema3 donchian(len) => math.avg(ta.lowest(len), ta.highest(len)) ATR_func(_src, _len)=> atrLow = low - ta.atr(_len) trailAtrLow = atrLow trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1] supportHit = _src <= trailAtrLow trailAtrLow := supportHit ? atrLow : trailAtrLow trailAtrLow f_dema(src, len)=> EMA1 = ta.ema(src, len) EMA2 = ta.ema(EMA1, len) DEMA = (2*EMA1)-EMA2 f_zlema(src, period) => lag = math.round((period - 1) / 2) ema_data = src + (src - src[lag]) zl= ta.ema(ema_data, period) f_kalman_filter(src) => float value1= na float value2 = na value1 := 0.2 * (src - src[1]) + 0.8 * nz(value1[1]) value2 := 0.1 * (ta.tr) + 0.8 * nz(value2[1]) lambda = math.abs(value1 / value2) alpha = (-math.pow(lambda, 2) + math.sqrt(math.pow(lambda, 4) + 16 * math.pow(lambda, 2)))/8 value3 = float(na) value3 := alpha * src + (1 - alpha) * nz(value3[1]) //SWITCH ma_func(modeSwitch, src, len, use_k_f=true) => modeSwitch == "SMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.sma(src, len)) : ta.sma(src, len) : modeSwitch == "RMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.rma(src, len)) : ta.rma(src, len) : modeSwitch == "EMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.ema(src, len)) : ta.ema(src, len) : modeSwitch == "TEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(tema(src, len)) : tema(src, len): modeSwitch == "DEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_dema(src, len)) : f_dema(src, len): modeSwitch == "ZLEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_zlema(src, len)) : f_zlema(src, len): modeSwitch == "WMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.wma(src, len)) : ta.wma(src, len): modeSwitch == "VWMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.vwma(src, len)) : ta.vwma(src, len): modeSwitch == "Hma" ? use_kalman_filter and use_k_f ? f_kalman_filter(HMA(src, len)) : HMA(src, len): modeSwitch == "Ehma" ? use_kalman_filter and use_k_f ? f_kalman_filter(EHMA(src, len)) : EHMA(src, len): modeSwitch == "Thma" ? use_kalman_filter and use_k_f ? f_kalman_filter(THMA(src, len/2)) : THMA(src, len/2): modeSwitch == "ATR" ? use_kalman_filter and use_k_f ? f_kalman_filter(ATR_func(src, len)): ATR_func(src, len) : modeSwitch == "L" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.lowest(len)): ta.lowest(len) : modeSwitch == "H" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.highest(len)): ta.highest(len) : modeSwitch == "DMA" ? donchian(len) : na //Var sum = 0.0 maopening_l = 0.0 maopening_s = 0.0 maclosing = 0.0 pos = strategy.position_size p = 0.0 p := pos == 0 ? (strategy.equity / 100) / close : p[1] truetime = true loss = 0.0 maxloss = 0.0 equity = 0.0 //MA Opening maopening_l := ma_func(maopeningtyp_l, maopeningsrc_l, maopeninglen_l) maopening_s := ma_func(maopeningtyp_s, maopeningsrc_s, maopeninglen_s) //MA Closing maclosing := ma_func(maclosingtyp, maclosingsrc, maclosinglen) * maclosingmul long1 = long1on == false ? 0 : long1shift == 0 ? 0 : long1lot == 0 ? 0 : maopening_l == 0 ? 0 : maopening_l * long1shift short1 = short1on == false ? 0 : short1shift == 0 ? 0 : short1lot == 0 ? 0 : maopening_s == 0 ? 0 : maopening_s * short1shift //Colors long1col = long1 == 0 ? na : color.green short1col = short1 == 0 ? na : color.red //Lines // plot(maopening_l, offset = OFFS, color = color.new(color.green, 50)) // plot(maopening_s, offset = OFFS, color = color.new(color.red, 50)) plot(maclosing, offset = OFFS, color = color.fuchsia) long1line = long1 == 0 ? close : long1 short1line = short1 == 0 ? close : short1 plot(long1line, offset = OFFS, color = long1col) plot(short1line, offset = OFFS, color = short1col) //Lots lotlong1 = p * long1lot lotshort1 = p * short1lot //Entry if truetime //Long sum := 0 strategy.entry("L", strategy.long, lotlong1, limit = on_close ? na : long1, when = long1 > 0 and pos <= sum and (on_close ? close <= long1[trade_offset] : true)) sum := lotlong1 //Short sum := 0 pos := -1 * pos strategy.entry("S", strategy.short, lotshort1, limit = on_close ? na : short1, when = short1 > 0 and pos <= sum and (on_close ? close >= short1[trade_offset] : true)) sum := lotshort1 strategy.exit("Exit", na, limit = maclosing) if time > finalTime strategy.close_all()