この戦略は,複数のタイムフレームで取引決定を行うために,MACD-V (ATR波動率のMACD) とフィボナッチリコールを使用する.これは,異なるタイムフレームのMACD-Vとフィボナッチレベルを計算し,現在の価格とフィボナッチレベルとの関係とMACD-Vの値に基づいて,ポジションとポジションを決定する.この戦略は,市場のトレンドとリコールを捉え,リスクを制御することを目的としています.
この戦略は,マルチタイムフレームのMACD-Vとフィボナッチリコールレベルによって,トレンドと開場タイミングを判断し,移動式ストップを活用して,リスクと利益を動的に制御する. 戦略の論理は明確で,適応性が強いが,波動的な市場では頻繁な取引と誤判のリスクが発生する可能性があります. より多くの指標を導入し,ポジション管理とストップロジックを最適化し,パラメータを最適化することで,戦略の安定性と収益性をさらに向上させることができます.
この戦略で使用されているMACD-v指標は,その原作者であるAlex Spiroglouに功績がある.詳細については彼の作品を参照してください:MACD-v.
/*backtest start: 2024-03-26 00:00:00 end: 2024-04-25 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © catikur //@version=5 strategy("Advanced MACD-V and Fibonacci Strategy with EMA Trailing TP", overlay=true, default_qty_type = strategy.percent_of_equity, default_qty_value=1000, margin_long=1./10*50, margin_short=1./10*50, slippage=0, commission_type=strategy.commission.percent, commission_value=0.05) // Parametreler fast_len = input.int(12, title="Fast Length", minval=1, group="MACD-V Settings") slow_len = input.int(26, title="Slow Length", minval=1, group="MACD-V Settings") signal_len = input.int(9, title="Signal Smoothing", minval=1, group="MACD-V Settings") atr_len = input.int(26, title="ATR Length", minval=1, group="MACD-V Settings") source = input.source(close, title="Source", group="MACD-V Settings") //ema_length = input.int(20, title="EMA Length for Trailing TP", group="Trailing TP Settings") trailing_profit = input.float(1000, title="Trailing Profit", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings") trailing_offset = input.float(30000, title="Trailing Offset", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings") trailing_factor = input.float(0.01, title="Trailing Factor", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings") fix_loss = input.float(20000, title="Fix Loss", minval=0.01, maxval=1000000, step=0.01, group="Trailing TP Settings") fib_lookback = input.int(9, title="Fibonacci Lookback Periods", minval=1, group="Fibonacci Settings") macd_tf = input.timeframe("5", title="MACD Timeframe", group="Timeframe Settings") fib_tf = input.timeframe("30", title="Fibonacci Timeframe", group="Timeframe Settings") //ema_tf = input.timeframe("30", title="EMA Timeframe for Trailing TP", group="Timeframe Settings") // MACD-V Hesaplama atr = ta.atr(atr_len) ema_slow = ta.ema(source, slow_len) ema_fast = ta.ema(source, fast_len) atr_tf = request.security(syminfo.tickerid, macd_tf , atr) ema_slow_tf = request.security(syminfo.tickerid, macd_tf , ema_slow) ema_fast_tf = request.security(syminfo.tickerid, macd_tf , ema_fast) macd = ( ema_fast_tf - ema_slow_tf ) / atr_tf * 100 signal = ta.ema(macd, signal_len) hist = macd - signal hist_prev = hist[1] // log.info("MACD {0} ", macd) // log.info("Signal {0} ", signal) // log.info("Histogram {0} ", hist) // log.info("Previous Histogram {0} ", hist_prev) // EMA for Trailing TP //ema_trailing_tf = ta.ema(close, ema_length) //ema_trailing = request.security(syminfo.tickerid, ema_tf, ema_trailing_tf) //log.info("EMA Trailing {0} ", ema_trailing) // Fibonacci Seviyeleri high_val_tf = ta.highest(high, fib_lookback) low_val_tf = ta.lowest(low, fib_lookback) h1 = request.security(syminfo.tickerid, fib_tf, high_val_tf) l1 = request.security(syminfo.tickerid, fib_tf, low_val_tf) fark = h1 - l1 //Low ile fark hl236 = l1 + fark * 0.236 hl382 = l1 + fark * 0.382 hl500 = l1 + fark * 0.5 hl618 = l1 + fark * 0.618 hl786 = l1 + fark * 0.786 //High ile fark lh236 = h1 - fark * 0.236 lh382 = h1 - fark * 0.382 lh500 = h1 - fark * 0.5 lh618 = h1 - fark * 0.618 lh786 = h1 - fark * 0.786 hbars_tf = -ta.highestbars(high, fib_lookback) lbars_tf = -ta.lowestbars(low, fib_lookback) hbars = request.security(syminfo.tickerid, fib_tf , hbars_tf) lbars = request.security(syminfo.tickerid, fib_tf , lbars_tf) fib_236 = hbars > lbars ? hl236 : lh236 fib_382 = hbars > lbars ? hl382 : lh382 fib_500 = hbars > lbars ? hl500 : lh500 fib_618 = hbars > lbars ? hl618 : lh618 fib_786 = hbars > lbars ? hl786 : lh786 // log.info("Fibo 382 {0} ", fib_382) // log.info("Fibo 618 {0} ", fib_618) // Keep track of the strategy's highest and lowest net profit var highestNetProfit = 0.0 var lowestNetProfit = 0.0 var bool sell_retracing = false var bool sell_reversing = false var bool buy_rebound = false var bool buy_rallying = false // Satış Koşulları sell_retracing := (signal > -20) and (macd > -50 and macd < 150) and (macd < signal) and (hist < hist_prev) and (close < fib_382) sell_reversing := (macd > -150 and macd < -50) and (macd < signal) and (hist < hist_prev) and (close < fib_618) // log.info("Retracing var mi: {0} ", sell_retracing) // log.info("Reversing var mi: {0} ", sell_reversing) // Alım Koşulları buy_rebound := (signal < 20) and (macd > -150 and macd < 50) and (macd > signal) and (hist > hist_prev) and ((fib_618 < close) or ((fib_618 > close ) and (close > fib_382))) buy_rallying := (macd > 50 and macd < 150) and (macd > signal) and (hist > hist_prev) and (close > fib_618) // log.info("Rallying var mi: {0} ", buy_rallying) // log.info("Rebound var mi: {0} ", buy_rebound) // Emirleri Yerleştirme if (sell_retracing == true and strategy.opentrades == 0 ) strategy.entry("sell_retracing", strategy.short) if (sell_reversing == true and strategy.opentrades == 0 ) strategy.entry("sell_reversing", strategy.short) if (buy_rebound == true and strategy.opentrades == 0 ) strategy.entry("buy_rebound", strategy.long) if (buy_rallying == true and strategy.opentrades == 0 ) strategy.entry("buy_rallying", strategy.long) // log.info("open order: {0} ", strategy.opentrades ) highestNetProfit := math.max(highestNetProfit, strategy.netprofit) lowestNetProfit := math.min(lowestNetProfit, strategy.netprofit) // Plot the net profit, as well as its highest and lowest value //plot(strategy.netprofit, style=plot.style_area, title="Net profit", // color=strategy.netprofit > 0 ? color.green : color.red) //plot(highestNetProfit, color=color.green, title="Highest net profit") //plot(lowestNetProfit, color=color.red, title="Lowest net profit") // Trailing Take Profit //long_trailing_stop = ema_trailing * trailing_factor //short_trailing_stop = ema_trailing / trailing_factor //log.info("long trailing stop {0} ", long_trailing_stop) //log.info("short trailing stop {0} ", short_trailing_stop) //log.info("avg price {0} ", strategy.position_avg_price) //trail_price1 = strategy.position_avg_price * (1 + trailing_factor) //trail_price2 = strategy.position_avg_price * (1 - trailing_factor) // log.info("position_size {0} ", strategy.position_size) // Trailing Take Profit var float long_trailing_stop = 0.0 var float short_trailing_stop = 0.0 //if (strategy.position_size > 0) // long_trailing_stop := math.max(long_trailing_stop, close * (1 + trailing_factor)) // Yeni bir maksimum değer belirlendiğinde güncelle //if (strategy.position_size < 0) // short_trailing_stop := math.min(short_trailing_stop, close * (1 - trailing_factor)) // Yeni bir minimum değer belirlendiğinde güncelle //log.info("long trailing {0} ", long_trailing_stop) // log.info("trailing factor{0} ", trailing_factor) //log.info("short trailing {0} ", short_trailing_stop) if (strategy.position_size != 0 ) strategy.exit("Exit Long", from_entry="buy_rebound", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss) strategy.exit("Exit Long", from_entry="buy_rallying", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss) strategy.exit("Exit Short", from_entry="sell_retracing", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss) strategy.exit("Exit Short", from_entry="sell_reversing", trail_points = trailing_profit, trail_offset = trailing_offset, loss = fix_loss)