この戦略は,ロンドンと米国の取引セッションの間に価格ブレイク機会を捕獲することに焦点を当てた高周波定量取引システムである.カスタマイズされた取引セッション (キルゾーン),ダイナミックなポジション管理,正確なオーダー管理を通じて安定した取引収益を達成する.戦略の核は,特定のセッション内の価格アクション分析を通じて完全な取引枠組みを確立することであり,バックバック期からの高低点データと組み合わせる.
この戦略は以下の基本原則に基づいて機能します. 1. セッション選択:この戦略は,通常,流動性と変動性が高いロンドンと米国の取引セッションに焦点を当てています. 2. ブレイクシグナル:現在の閉店価格と開店価格の関係,および過去の高値と低値との比較を分析することによって,潜在的なブレイクシグナルを特定する. 3. ダイナミックポジショニング: 口座資本,リスクパーセント,ストップ・ロスト距離に基づいて,それぞれの取引のポジションサイズをダイナミックに計算します. 4. オーダー管理: 期限切れのオーダーによるリスクを回避するために,自動的な待機中のオーダーキャンセルメカニズムを実装します. 5. リスク・リターン比:トレーダーが個人リスクの好みに応じてリスク・リターン比を設定することができます.
この戦略は,時間,価格,位置を含む複数の次元を総合的に活用することで,完全な高周波取引システムを構築する.その主な利点は,取引の正確なタイミングと包括的なリスク管理メカニズムにあります.しかし,トレーダーは市場の状況の変化を注意深く監視し,パラメータ設定をそれに合わせて調整する必要があります.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-10 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=6 strategy("ENIGMA ENDGAME Strategy", overlay=true, margin_long=100, margin_short=100) // Description: // The ENIGMA ENDGAME strategy leverages price action breakouts within specific kill zones (London and US sessions) to capture profitable opportunities. // The strategy uses dynamic position sizing based on account equity, precise entry logic via buy-stop and sell-stop orders, and robust risk management to achieve consistent profitability. // Features include: // - Customizable kill zones for session-specific trading. // - Risk management with dynamic position sizing based on user-defined percentages. // - Multiple entry opportunities with lookback-based high/low tracking. // - Automatic pending order cancellation to avoid stale trades. // - Adjustable risk-reward ratios for optimal profit-taking. // Define customizable kill zones for London and US sessions london_start_hour = input.int(2, minval=0, maxval=23, title="London Start Hour (UTC)") london_end_hour = input.int(5, minval=0, maxval=23, title="London End Hour (UTC)") us_start_hour = input.int(8, minval=0, maxval=23, title="US Start Hour (UTC)") us_end_hour = input.int(11, minval=0, maxval=23, title="US End Hour (UTC)") // Risk management parameters risk_percentage = input.float(0.1, title="Risk Percentage per Trade (%)", step=0.01) account_balance = strategy.equity // Define lookback parameters lookback_period = 3 cancel_after_bars = input.int(5, title="Cancel Pending Orders After Bars") // User-defined risk-reward ratio risk_reward_ratio = input.float(1.0, title="Risk-Reward Ratio", minval=0.1, step=0.1) // Kill zone function in_kill_zone = (hour(time) >= london_start_hour and hour(time) < london_end_hour) or (hour(time) >= us_start_hour and hour(time) < us_end_hour) // Calculate Position Size Based on Risk calc_position_size(entry_price, stop_loss) => // This function calculates the position size based on the account equity, risk percentage, and stop-loss distance. risk = account_balance * (risk_percentage / 100) stop_loss_distance = math.abs(entry_price - stop_loss) // Validate stop-loss distance stop_loss_distance := stop_loss_distance < syminfo.mintick * 10 ? syminfo.mintick * 10 : stop_loss_distance position_size = risk / stop_loss_distance // Clamp position size math.min(position_size, 10000000000.0) // Limit to Pine Script max qty // Initialize arrays to store high/low levels var float[] buy_highs = array.new_float(0) var float[] sell_lows = array.new_float(0) var int[] pending_orders = array.new_int(0) // Buy and Sell Arrow Conditions bullish_arrow = close > open and close > high[1] and in_kill_zone // Triggers buy logic when price action breaks out in the upward direction within a kill zone. bearish_arrow = close < open and close < low[1] and in_kill_zone // Triggers sell logic when price action breaks out in the downward direction within a kill zone. // Store Highs and Place Buy-Stops if bullish_arrow array.clear(buy_highs) // Clears previous data to store new highs. for i = 1 to lookback_period array.push(buy_highs, high[i]) // Tracks highs from the lookback period. // Place buy-stop orders for high_level in buy_highs stop_loss = low - syminfo.mintick * 10 // 1 pip below the low take_profit = high_level + (high_level - stop_loss) * risk_reward_ratio // Calculate take-profit based on the risk-reward ratio. strategy.entry("Buy", strategy.long, stop=high_level, qty=calc_position_size(high_level, stop_loss)) strategy.exit("Take Profit", "Buy", limit=take_profit, stop=stop_loss) // Store Lows and Place Sell-Stops if bearish_arrow array.clear(sell_lows) // Clears previous data to store new lows. for i = 1 to lookback_period array.push(sell_lows, low[i]) // Tracks lows from the lookback period. // Place sell-stop orders for low_level in sell_lows stop_loss = high + syminfo.mintick * 10 // 1 pip above the high take_profit = low_level - (stop_loss - low_level) * risk_reward_ratio // Calculate take-profit based on the risk-reward ratio. strategy.entry("Sell", strategy.short, stop=low_level, qty=calc_position_size(low_level, stop_loss)) strategy.exit("Take Profit", "Sell", limit=take_profit, stop=stop_loss) // Cancel Pending Orders After Defined Bars if array.size(pending_orders) > 0 for i = 0 to array.size(pending_orders) - 1 if bar_index - array.get(pending_orders, i) >= cancel_after_bars array.remove(pending_orders, i) // Removes outdated pending orders. // Alerts for debugging alertcondition(bullish_arrow, title="Buy Alert", message="Buy signal generated.") alertcondition(bearish_arrow, title="Sell Alert", message="Sell signal generated.")