Sumber dimuat naik... memuat...

Strategi Pengesanan Trend Berbilang Penunjuk

Penulis:ChaoZhang, Tarikh: 2023-12-27 17:15:45
Tag:

img

Ringkasan

Strategi ini dinamakanStrategi Pengesanan Trend Berbilang PenunjukIa menggunakan pelbagai penunjuk termasuk Fisher Transform, Weighted Moving Average (WMA), Relative Strength Index (RSI) dan On-Balance Volume (OBV) untuk menentukan arah trend pasaran dan mengesan trend untuk perdagangan.

Logika Strategi

  1. Fisher Transform untuk mengesan trend dan momentum perubahan harga. Isyarat perdagangan dihasilkan apabila empat garis Fisher menukar warna secara serentak.
  2. WMA untuk menentukan arah trend utama.
  3. OBV untuk mengesahkan trend.

Secara khusus, Fisher Transform mengandungi empat garis - 1x, 2x, 4x dan 8x. Apabila empat garis bertukar hijau secara serentak, isyarat panjang dihasilkan. Apabila empat garis bertukar merah secara serentak, isyarat pendek dihasilkan. WMA menentukan sama ada trend utama adalah bullish atau bearish. OBV mengesahkan arah trend. RSI menapis isyarat palsu.

Analisis Kelebihan

Kelebihan strategi ini:

  1. Transform Fisher sensitif momentum, apabila empat garis Fisher menukar warna secara serentak, ia memastikan kebarangkalian tinggi pembalikan trend.
  2. WMA menentukan trend utama untuk mengelakkan perdagangan terhadap trend.
  3. OBV mengesahkan trend sebenar, mengelakkan pecah palsu dalam pasaran tanpa trend.
  4. RSI menapis isyarat palsu untuk memastikan kebolehpercayaan isyarat perdagangan.

Melalui gabungan beberapa penunjuk, ia memastikan ketepatan dan kebolehpercayaan isyarat perdagangan dan mampu menangkap trend, yang membawa kepada prestasi strategi yang baik.

Analisis Risiko

Risiko strategi ini:

  1. Garis Fisher boleh menghasilkan isyarat palsu jika pasaran dalam konsolidasi. RSI membantu menapis isyarat palsu dalam kes ini.
  2. Tetapan parameter WMA yang tidak betul boleh menjejaskan ketepatan trend.
  3. Fisher Transform tidak berprestasi baik dalam trend jangka pendek.
  4. Penurunan air terjun boleh menyebabkan kerugian besar.

Untuk mengurangkan risiko, parameter RSI boleh diselaraskan dengan sewajarnya. Tempoh WMA boleh dioptimumkan. Stop loss juga boleh ditetapkan untuk mengelakkan kerugian besar.

Arahan pengoptimuman

Strategi ini boleh dioptimumkan lagi dari aspek berikut:

  1. Uji keberkesanan dalam jangka masa yang berbeza untuk mencari kombinasi parameter yang optimum.
  2. Tambah mekanisme stop loss. Tetapkan stop loss apabila kerugian mencapai tahap tertentu.
  3. Tambah menyesuaikan parameter Transform Fisher berdasarkan hasil backtest untuk mencari kombinasi parameter optimum dengan ketepatan terbaik.
  4. Cuba tambahkan penapis lain seperti indeks kekuatan, indeks bias dan lain-lain.
  5. Uji strategi yang berbeza untuk menetapkan saiz kedudukan.

Kesimpulan

Strategi ini mengintegrasikan Fisher Transform, WMA, OBV dan RSI untuk menentukan arah trend. Ia menjana isyarat perdagangan yang tepat dengan keupayaan pengesahan yang kuat, yang membolehkan mengunci keuntungan dengan berkesan di sepanjang trend. Dengan pengoptimuman parameter lanjut, faktor keuntungan dapat ditingkatkan. Kesimpulannya, melalui gabungan beberapa penunjuk, strategi ini secara berkesan mengesan trend dengan prestasi yang baik.


/*backtest
start: 2022-12-20 00:00:00
end: 2023-12-26 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
//author Sdover0123
strategy(title='FTR, WMA, OBV & RSI Strat', shorttitle='FTR WMA, OBV, RSI',overlay=false, default_qty_type=strategy.percent_of_equity, initial_capital = 100, default_qty_value=100, commission_value = 0.06, pyramiding = 3)
Len = input.int(10, minval=1, group ="Fisher Transform")
mult1 = input.int(1, minval=1, group ="Fisher Transform")
mult2 = input.int(2, minval=1, group ="Fisher Transform")
mult3 = input.int(4, minval=1, group ="Fisher Transform")
mult4 = input.int(8, minval=1, group ="Fisher Transform")
fish(Length, timeMultiplier) =>
    var nValue1 = 0.0
    var nValue2 = 0.0
    var nFish = 0.0
    xHL2 = hl2
    xMaxH = ta.highest(xHL2, Length * timeMultiplier)
    xMinL = ta.lowest(xHL2, Length * timeMultiplier)
    nValue1 := 0.33 * 2 * ((xHL2 - xMinL) / (xMaxH - xMinL) - 0.5) + 0.67 * nz(nValue1[1])
    if nValue1 > .99
        nValue2 := .999
        nValue2
    else if nValue1 < -.99
        nValue2 := -.999
        nValue2
    else
        nValue2 := nValue1
        nValue2
    nFish := 0.5 * math.log((1 + nValue2) / (1 - nValue2)) + 0.5 * nz(nFish[1])
    nFish
Fisher1 = fish(Len, mult1)
Fisher2 = fish(Len, mult2)
Fisher4 = fish(Len, mult3)
Fisher8 = fish(Len, mult4)

rsiLength = input.int(14, minval=1, group ="Moving Averages")
rsiVal = (ta.rsi(close, rsiLength) - 50) / 10
avg = strategy.position_avg_price

wma(source, length) =>
    sum = 0.0
    for i = 0 to length - 1
        sum := sum + source[i] * (length - i)
    wma = sum / (length * (length + 1) / 2)
    wma

wmaLength = input.int(10, "WMA Length", minval=1, group ="Moving Averages")
wmaClose = wma(close, wmaLength)
// Determine if WMA is bullish or bearish
isWmaBullish = wmaClose > wmaClose[1]
isWmaBearish = wmaClose < wmaClose[1]

//OBV 
src = close
length = input.int(20, title="OBV Length", group="On-Balance Volume")
obv1(src) =>
    change_1 = ta.change(src)
    ta.cum(ta.change(src) > 0 ? volume : change_1 < 0 ? -volume : 0 * volume)*0.01
os = obv1(src)
obv_osc = os - ta.ema(os, length)
obc_color = (obv_osc > 0 ? color.rgb(0, 255, 8) : color.rgb(255, 0, 0))
plot(obv_osc, color=obc_color, style=plot.style_line, title='OBV-Points', linewidth=2)
plot(obv_osc, color=color.new(#b2b5be, 70), title='OBV', style=plot.style_area)
obvBullFilter = input.float(0.1, minval = 0, maxval = 5, step = 0.01, title ="OBV Bullish minimum value", group="On-Balance Volume")
obvBearFilter = input.float(-0.1, minval = -5, maxval = 0, step = 0.01, title ="OBV Bearish minimum value", group="On-Balance Volume")
obvBull = obv_osc > obvBullFilter
obvBear = obv_osc < obvBearFilter

// Add buy/sell signals
ReversalFilterDown = input.float(-0.7, 'Reversal Down TP Filter', -4, 4, step = 0.01, group = "RSI Level Filters", tooltip = "This is defined by taking the RSI value -50 and /10. When all Fisher lines are changing colour, this will SL/TP the long")
ReversalFilterUp = input.float(0.7, 'Reversal Up TP Filter', -4, 4, step = 0.01, group = "RSI Level Filters", tooltip = "This is defined by taking the RSI value -50 and /10. When all Fisher lines are changing colour, this will SL/TP the short")
RSILevelBuyFilter = input.float(1.66, 'RSI Level Buy Filter', -4, 4, step = 0.01, group = "RSI Level Filters", tooltip = "This is defined by taking the RSI value -50 and /10. Consider negative values")
RSILevelSellFilter = input.float(1, 'RSI Level Sell Filter', -4, 4, step = 0.01, group = "RSI Level Filters", tooltip = "This is defined by taking the RSI value -50 and /10. Consider negative values")
//buys - if breaking out and all Fisher are green and RSI filter value is met 
buySignal = Fisher1 > Fisher1[1] and Fisher2 > Fisher2[1] and Fisher4 > Fisher4[1] and Fisher8 > Fisher8[1] and rsiVal > RSILevelBuyFilter and isWmaBullish and obvBull
ReversalUp = Fisher1 > Fisher1[1] and Fisher2 > Fisher2[1] and Fisher4 > Fisher4[1] and Fisher8 > Fisher8[1] and rsiVal > ReversalFilterUp
//sells - if breaking down and all Fisher are green and RSI filter value is met 
sellSignal = Fisher1 < Fisher1[1] and Fisher2 < Fisher2[1] and Fisher4 < Fisher4[1] and Fisher8 < Fisher8[1] and rsiVal < RSILevelSellFilter and isWmaBearish and obvBear
ReversalDown = Fisher1 < Fisher1[1] and Fisher2 < Fisher2[1] and Fisher4 < Fisher4[1] and Fisher8 < Fisher8[1] and rsiVal < ReversalFilterDown


// Buy and Sell conditions
if buySignal and time>timestamp(2022, 06, 01, 09, 30) and barstate.isconfirmed
    strategy.close("Sell", comment = "Close Short")
    strategy.entry("Buy", strategy.long, comment = "Long")

if sellSignal and time>timestamp(2022, 06, 01, 09, 30) and barstate.isconfirmed
    strategy.close("Buy", comment = "Close Long")
    strategy.entry("Sell", strategy.short, comment = "Short")

if ReversalDown
    strategy.close("Buy", comment = "Close Long")

if ReversalUp
    strategy.close("Sell", comment = "Close Short")

//Plotting
//Fisher
plot(Fisher1, color=Fisher1 > nz(Fisher1[1]) ? color.green : color.rgb(255, 0, 0), title='Fisher TF:1')
plot(Fisher2, color=Fisher2 > nz(Fisher2[1]) ? color.green : color.rgb(255, 0, 0), title='Fisher TF:1', linewidth=2)
plot(Fisher4, color=Fisher4 > nz(Fisher4[1]) ? #008000 : #b60000, title='Fisher TF:1', linewidth=3)
plot(Fisher8, color=Fisher8 > nz(Fisher8[1]) ? #004f00 : #b60000, title='Fisher TF:1', linewidth=3)
//RSI
plot(rsiVal, color=rsiVal < 0 ? color.purple : color.yellow, linewidth=2, title='RSI')

//WMA
plot(isWmaBullish ? -2 : na, color=color.rgb(76, 175, 79, 20), linewidth=3, style=plot.style_linebr, title="WMA Bullish")
plot(isWmaBearish ? -2 : na, color=color.rgb(255, 82, 82, 20), linewidth=3, style=plot.style_linebr, title="WMA Bearish")

//Buy/Sell Signals
plotshape(buySignal, title='Buy Signal', location=location.bottom, color=color.new(color.lime, 0), style=shape.triangleup, size=size.small)
plotshape(sellSignal, title='Sell Signal', location=location.top, color=color.new(color.red, 0), style=shape.triangledown, size=size.small)

//Orientation
hline(RSILevelBuyFilter, color=color.rgb(25, 36, 99, 20), linestyle=hline.style_dotted, linewidth=2)
hline(RSILevelSellFilter, color=color.rgb(111, 27, 27, 20), linestyle=hline.style_dotted, linewidth=2)
hline(0, color=color.rgb(181, 166, 144, 39), linestyle=hline.style_dashed, linewidth=2, title = "Zero Line")
hline(1.5, color=color.rgb(217, 219, 220, 50), linestyle=hline.style_dotted, linewidth=2, title = "1.5 // 65 Line")
hline(-1.5, color=color.rgb(217, 219, 220, 50), linestyle=hline.style_dotted, linewidth=2, title = "-1.5 // 35 Line")

Lebih lanjut