O artigo aborda principalmente estratégias de negociação de alta frequência, com foco em modelagem cumulativa do volume de transações e choques de preços. O artigo propõe um modelo inicial de posições de negociação preferenciais pendentes, com base em uma compreensão do volume de transações e dos choques de preços, para tentar encontrar as posições de negociação mais adequadas.
O artigo anterior mostra a expressão de probabilidade de uma transação única ser maior do que um determinado valor:
Também estamos preocupados com a distribuição do volume de transações durante um período de tempo, que deve ser intuitivamente relacionada ao volume de transações e à frequência de pedidos por transação.
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
trades = pd.read_csv('HOOKUSDT-aggTrades-2023-01-27.csv')
trades['date'] = pd.to_datetime(trades['transact_time'], unit='ms')
trades.index = trades['date']
buy_trades = trades[trades['is_buyer_maker']==False].copy()
buy_trades = buy_trades.groupby('transact_time').agg({
'agg_trade_id': 'last',
'price': 'last',
'quantity': 'sum',
'first_trade_id': 'first',
'last_trade_id': 'last',
'is_buyer_maker': 'last',
'date': 'last',
'transact_time':'last'
})
buy_trades['interval']=buy_trades['transact_time'] - buy_trades['transact_time'].shift()
buy_trades.index = buy_trades['date']
Combinar transações individuais em cada 1s de intervalo para o volume de transações, remover as partes não transacionadas e combinar com a distribuição de transações individuais acima, o resultado é melhor, considerar todas as transações dentro de 1s como uma única transação, o problema se torna um problema resolvido. Mas quando o ciclo é alargado (relativamente à frequência de transações), o erro aumenta, e o estudo descobriu que esse erro é causado pela modificação do distribuição de Pareto anterior.
df_resampled = buy_trades['quantity'].resample('1S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
buy_trades
agg_trade_id | Preço | Quantidade | primeiro_trade_id | último_trade_id | é_comprador_fabricante | data | transact_time (tempo da transacção) | intervalo | diferença | |
---|---|---|---|---|---|---|---|---|---|---|
2023-01-27 00:00:00.161 | 1138369 | 2.901 | 54.3 | 3806199 | 3806201 | Falso | 2023-01-27 00:00:00.161 | 1674777600161 | NaN | 0.001 |
2023-01-27 00:00:04.140 | 1138370 | 2.901 | 291.3 | 3806202 | 3806203 | Falso | 2023-01-27 00:00:04.140 | 1674777604140 | 3979.0 | 0.000 |
2023-01-27 00:00:04.339 | 1138373 | 2.902 | 55.1 | 3806205 | 3806207 | Falso | 2023-01-27 00:00:04.339 | 1674777604339 | 199.0 | 0.001 |
2023-01-27 00:00:04.772 | 1138374 | 2.902 | 1032.7 | 3806208 | 3806223 | Falso | 2023-01-27 00:00:04.772 | 1674777604772 | 433.0 | 0.000 |
2023-01-27 00:00:05.562 | 1138375 | 2.901 | 3.5 | 3806224 | 3806224 | Falso | 2023-01-27 00:00:05.562 | 1674777605562 | 790.0 | 0.000 |
… | … | … | … | … | … | … | … | … | … | … |
2023-01-27 23:59:57.739 | 1544370 | 3.572 | 394.8 | 5074645 | 5074651 | Falso | 2023-01-27 23:59:57.739 | 1674863997739 | 1224.0 | 0.002 |
2023-01-27 23:59:57.902 | 1544372 | 3.573 | 177.6 | 5074652 | 5074655 | Falso | 2023-01-27 23:59:57.902 | 1674863997902 | 163.0 | 0.001 |
2023-01-27 23:59:58.107 | 1544373 | 3.573 | 139.8 | 5074656 | 5074656 | Falso | 2023-01-27 23:59:58.107 | 1674863998107 | 205.0 | 0.000 |
2023-01-27 23:59:58.302 | 1544374 | 3.573 | 60.5 | 5074657 | 5074657 | Falso | 2023-01-27 23:59:58.302 | 1674863998302 | 195.0 | 0.000 |
2023-01-27 23:59:59.894 | 1544376 | 3.571 | 12.1 | 5074662 | 5074664 | Falso | 2023-01-27 23:59:59.894 | 1674863999894 | 1592.0 | 0.000 |
#1s内的累计分布
depths = np.array(range(0, 3000, 5))
probabilities = np.array([np.mean(df_resampled['quantity'] > depth) for depth in depths])
mean = df_resampled['quantity'].mean()
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2.05)
probabilities_s = np.array([((1+20**(-depth/mean))*depth/mean+1)**(alpha) for depth in depths])
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities)
plt.plot(depths, probabilities_s)
plt.xlabel('Depth')
plt.ylabel('Probability of execution')
plt.title('Execution probability at different depths')
plt.grid(True)
df_resampled = buy_trades['quantity'].resample('30S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
depths = np.array(range(0, 12000, 20))
probabilities = np.array([np.mean(df_resampled['quantity'] > depth) for depth in depths])
mean = df_resampled['quantity'].mean()
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2.05)
probabilities_s = np.array([((1+20**(-depth/mean))*depth/mean+1)**(alpha) for depth in depths])
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2)
probabilities_s_2 = np.array([(depth/mean+1)**alpha for depth in depths]) # 无修正
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities,label='Probabilities (True)')
plt.plot(depths, probabilities_s, label='Probabilities (Simulation 1)')
plt.plot(depths, probabilities_s_2, label='Probabilities (Simulation 2)')
plt.xlabel('Depth')
plt.ylabel('Probability of execution')
plt.title('Execution probability at different depths')
plt.legend()
plt.grid(True)
Agora, resuma uma fórmula geral para a distribuição de transações acumuladas em diferentes períodos de tempo, ajustando-a com a distribuição de transações individuais, sem usar estatísticas separadas de cada vez.
O intervalo avg_interval_T indica o intervalo médio de transações individuais e o intervalo médio de intervalos a estimar, o que é um pouco desviado. Se quisermos estimar o intervalo de 1s, é necessário estudar o intervalo médio de eventos de transações dentro de 1s. Se a probabilidade de chegada de um pedido estiver de acordo com a distribuição de Parsons, aqui deve ser possível estimar diretamente, mas o desvio real é grande, não será explicado aqui.
Observe que a probabilidade de uma transação em um intervalo de tempo maior do que um determinado valor e a probabilidade de uma transação em um local na profundidade real devem diferir muito, porque quanto mais tempo de espera, maior a probabilidade de mudanças no livro de pedidos, e as transações também levam a mudanças na profundidade, portanto, a probabilidade de uma transação na mesma profundidade varia em tempo real com a atualização dos dados.
df_resampled = buy_trades['quantity'].resample('2S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
depths = np.array(range(0, 6500, 10))
probabilities = np.array([np.mean(df_resampled['quantity'] > depth) for depth in depths])
mean = buy_trades['quantity'].mean()
adjust = buy_trades['interval'].mean() / 2620
alpha = np.log(np.mean(buy_trades['quantity'] > mean))/0.7178397931503168
probabilities_s = np.array([((1+20**(-depth*adjust/mean))*depth*adjust/mean+1)**(alpha) for depth in depths])
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities)
plt.plot(depths, probabilities_s)
plt.xlabel('Depth')
plt.ylabel('Probability of execution')
plt.title('Execution probability at different depths')
plt.grid(True)
Os dados de transações são um tesouro, e há muitos dados para serem extraídos. Devemos estar muito atentos ao impacto dos pedidos sobre o preço, o que afeta o posicionamento da listagem da estratégia. Também com base nos dados agregados do transact_time, calcula-se a diferença entre o último preço e o primeiro preço, se houver apenas um pedido, a diferença é zero.
Os resultados mostram que a proporção de não-impactos é de até 77%, a proporção de 1 tick é de 16,5%, 2 ticks são de 3,7%, 3 ticks são de 1,2%, e mais de 4 ticks são de menos de 1%.
A quantidade de transações causando o diferencial correspondente é estatisticamente calculada, eliminando a distorção de impacto muito grande, basicamente de acordo com a relação linear, com cerca de 1 tick de variação de preço por cada 1000 volumes. Também pode ser entendido como uma quantidade média de pendências de cerca de 1000 volumes de preço por prato.
diff_df = trades[trades['is_buyer_maker']==False].groupby('transact_time')['price'].agg(lambda x: abs(round(x.iloc[-1] - x.iloc[0],3)) if len(x) > 1 else 0)
buy_trades['diff'] = buy_trades['transact_time'].map(diff_df)
diff_counts = buy_trades['diff'].value_counts()
diff_counts[diff_counts>10]/diff_counts.sum()
0.000 0.769965
0.001 0.165527
0.002 0.037826
0.003 0.012546
0.004 0.005986
0.005 0.003173
0.006 0.001964
0.007 0.001036
0.008 0.000795
0.009 0.000474
0.010 0.000227
0.011 0.000187
0.012 0.000087
0.013 0.000080
Name: diff, dtype: float64
diff_group = buy_trades.groupby('diff').agg({
'quantity': 'mean',
'diff': 'last',
})
diff_group['quantity'][diff_group['diff']>0][diff_group['diff']<0.01].plot(figsize=(10,5),grid=True);
A diferença aqui é que haverá um impacto negativo no preço dentro dos 2s. É claro que, como aqui só são estatísticas de pagamentos, a posição simétrica é maior que um tick. Continuando a observar a relação entre volume de transações e impacto, somente resultados estatísticos maiores que 0, conclusões e ordens individuais são quase idênticas, e também uma relação linear aproximada, cada tick requer cerca de 2000 quantidades.
df_resampled = buy_trades.resample('2S').agg({
'price': ['first', 'last', 'count'],
'quantity': 'sum'
})
df_resampled['price_diff'] = round(df_resampled[('price', 'last')] - df_resampled[('price', 'first')],3)
df_resampled['price_diff'] = df_resampled['price_diff'].fillna(0)
result_df_raw = pd.DataFrame({
'price_diff': df_resampled['price_diff'],
'quantity_sum': df_resampled[('quantity', 'sum')],
'data_count': df_resampled[('price', 'count')]
})
result_df = result_df_raw[result_df_raw['price_diff'] != 0]
result_df['price_diff'][abs(result_df['price_diff'])<0.016].value_counts().sort_index().plot.bar(figsize=(10,5));
result_df['price_diff'].value_counts()[result_df['price_diff'].value_counts()>30]
0.001 7176
-0.001 3665
0.002 3069
-0.002 1536
0.003 1260
0.004 692
-0.003 608
0.005 391
-0.004 322
0.006 259
-0.005 192
0.007 146
-0.006 112
0.008 82
0.009 75
-0.007 75
-0.008 65
0.010 51
0.011 41
-0.010 31
Name: price_diff, dtype: int64
diff_group = result_df.groupby('price_diff').agg({ 'quantity_sum': 'mean'})
diff_group[(diff_group.index>0) & (diff_group.index<0.015)].plot(figsize=(10,5),grid=True);
A primeira busca o volume de transação necessário para uma mudança de tick, mas não é precisa, pois é baseada no caso de assumir que o choque já ocorreu. Agora, por sua vez, olha para o choque de preço causado pelo volume de transação.
Aqui, os dados são amostrados por 1s, um passo por cada 100 unidades, e a variação de preços é estatística dentro desse intervalo.
Em seguida, o ponto C representa a mudança de preço e o ponto Q representa o volume de transações.
df_resampled = buy_trades.resample('1S').agg({
'price': ['first', 'last', 'count'],
'quantity': 'sum'
})
df_resampled['price_diff'] = round(df_resampled[('price', 'last')] - df_resampled[('price', 'first')],3)
df_resampled['price_diff'] = df_resampled['price_diff'].fillna(0)
result_df_raw = pd.DataFrame({
'price_diff': df_resampled['price_diff'],
'quantity_sum': df_resampled[('quantity', 'sum')],
'data_count': df_resampled[('price', 'count')]
})
result_df = result_df_raw[result_df_raw['price_diff'] != 0]
df = result_df.copy()
bins = np.arange(0, 30000, 100) #
labels = [f'{i}-{i+100-1}' for i in bins[:-1]]
df.loc[:, 'quantity_group'] = pd.cut(df['quantity_sum'], bins=bins, labels=labels)
grouped = df.groupby('quantity_group')['price_diff'].mean()
grouped_df = pd.DataFrame(grouped).reset_index()
grouped_df['quantity_group_center'] = grouped_df['quantity_group'].apply(lambda x: (float(x.split('-')[0]) + float(x.split('-')[1])) / 2)
plt.figure(figsize=(10,5))
plt.scatter(grouped_df['quantity_group_center'], grouped_df['price_diff'],s=10)
plt.plot(grouped_df['quantity_group_center'], np.array(grouped_df['quantity_group_center'].values)/2e6-0.000352,color='red')
plt.xlabel('quantity_group_center')
plt.ylabel('average price_diff')
plt.title('Scatter plot of average price_diff by quantity_group')
plt.grid(True)
grouped_df.head(10)
quantidade_grupo | preço_diferença | quantidade_grupo_centro | |
---|---|---|---|
0 | 0-199 | -0.000302 | 99.5 |
1 | 100-299 | -0.000124 | 199.5 |
2 | 200-399 | -0.000068 | 299.5 |
3 | 300-499 | -0.000017 | 399.5 |
4 | 400-599 | -0.000048 | 499.5 |
5 | 500-699 | 0.000098 | 599.5 |
6 | 600-799 | 0.000006 | 699.5 |
7 | 700-899 | 0.000261 | 799.5 |
8 | 800-999 | 0.000186 | 899.5 |
9 | 900-1099 | 0.000299 | 999.5 |
Com um modelo grosseiro de transações completas e transações correspondentes a choques de preços, parece ser possível calcular a posição ideal para a suspensão.
Primeiro, escreva um simples retorno esperado, ou seja, a probabilidade de pagamento acumulado maior que Q em 1s, multiplicado pelo retorno esperado (ou seja, o preço do impacto):
De acordo com a imagem, a expectativa de ganho é maior em cerca de 2500, cerca de 2,5 vezes o volume médio de transações. Ou seja, os pedidos de venda devem ser pendurados na posição 2500. É necessário enfatizar novamente que o volume de transações no eixo transversal representa 1s, não pode ser simplesmente igual à posição de profundidade.
Descobrimos que a distribuição de transações em diferentes intervalos de tempo é uma simples escalada da distribuição de transações individuais. Também, com base no impacto de preços e na probabilidade de transações, fizemos um modelo de ganhos esperados simples, cujo resultado está de acordo com nossas expectativas. Se o volume de transações vendidas for pequeno, o que indica uma queda de preços, um certo volume é necessário para o espaço de lucro, e quanto maior o volume de transações, menor a probabilidade, há um tamanho ideal no meio, também a posição estratégica de busca.
#1s内的累计分布
df_resampled = buy_trades['quantity'].resample('1S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
depths = np.array(range(0, 15000, 10))
mean = df_resampled['quantity'].mean()
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2.05)
probabilities_s = np.array([((1+20**(-depth/mean))*depth/mean+1)**(alpha) for depth in depths])
profit_s = np.array([depth/2e6-0.000352 for depth in depths])
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities_s*profit_s)
plt.xlabel('Q')
plt.ylabel('Excpet profit')
plt.grid(True)
Quantificação de óculos 🐂🍺