Esta estratégia combina um modelo de rede neural, indicador RSI e indicador Super Trend para negociação.
A lógica é:
Construir um modelo de rede neural com entradas incluindo mudança de volume, Bandas de Bollinger, RSI etc.
A rede prevê a taxa de variação futura dos preços
Calcular os valores do RSI e combiná-los com a variação prevista dos preços
Gerar linhas de stop loss dinâmicas baseadas no RSI
Ir curto quando o preço quebra acima do stop loss; ir longo quando o preço quebra abaixo do stop down
Utilize o julgamento da tendência Super Trend para filtragem
A estratégia aproveita a capacidade das redes neurais de modelar dados complexos, com verificação adicional de sinais de indicadores como RSI e Super Trend para melhorar a precisão enquanto controla o risco.
Modelos de redes neurais de dados multidimensionais para determinar tendências
O RSI para para proteger os lucros, Super Trend ajuda no julgamento
Multiplos indicadores combinados para melhorar a qualidade do sinal
Requer grandes conjuntos de dados para treinamento de redes neurais
É necessário ajustar os parâmetros do RSI e do Super Trend
O desempenho depende das previsões do modelo, existem incertezas
Esta estratégia combina o aprendizado de máquina com técnicas tradicionais de eficiência com controlos de riscos.
/*backtest start: 2023-08-14 00:00:00 end: 2023-09-13 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //ANN taken from https://www.tradingview.com/script/Eq4zZsTI-ANN-MACD-BTC/ //it only work for BTC as the ANN is trained for this data only //super trend https://www.tradingview.com/script/VLWVV7tH-SuperTrend/ // Strategy version created for @che_trader strategy ("ANN RSI SUPER TREND STRATEGY BY che_trader", overlay = true) qty = input(10000, "Buy quantity") testStartYear = input(2019, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testStartHour = input(0, "Backtest Start Hour") testStartMin = input(0, "Backtest Start Minute") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,testStartHour,testStartMin) testStopYear = input(2099, "Backtest Stop Year") testStopMonth = input(1, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) testPeriod() => true max_bars_back = (21) src = close[0] // Essential Functions // Highest - Lowest Functions ( All efforts goes to RicardoSantos ) f_highest(_src, _length)=> _adjusted_length = _length < 1 ? 1 : _length _value = _src for _i = 0 to (_adjusted_length-1) _value := _src[_i] >= _value ? _src[_i] : _value _return = _value f_lowest(_src, _length)=> _adjusted_length = _length < 1 ? 1 : _length _value = _src for _i = 0 to (_adjusted_length-1) _value := _src[_i] <= _value ? _src[_i] : _value _return = _value // Function Sum f_sum(_src , _length) => _output = 0.00 _length_adjusted = _length < 1 ? 1 : _length for i = 0 to _length_adjusted-1 _output := _output + _src[i] // Unlocked Exponential Moving Average Function f_ema(_src, _length)=> _length_adjusted = _length < 1 ? 1 : _length _multiplier = 2 / (_length_adjusted + 1) _return = 0.00 _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1] // Unlocked Moving Average Function f_sma(_src, _length)=> _output = 0.00 _length_adjusted = _length < 0 ? 0 : _length w = cum(_src) _output:= (w - w[_length_adjusted]) / _length_adjusted _output // Definition : Function Bollinger Bands Multiplier = 2 _length_bb = 20 e_r = f_sma(src,_length_bb) // Function Standard Deviation : f_stdev(_src,_length) => float _output = na _length_adjusted = _length < 2 ? 2 : _length _avg = f_ema(_src , _length_adjusted) evar = (_src - _avg) * (_src - _avg) evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted) _output := sqrt(evar2) std_r = f_stdev(src , _length_bb ) upband = e_r + (Multiplier * std_r) // Upband dnband = e_r - (Multiplier * std_r) // Lowband basis = e_r // Midband // Function : RSI length = input(14, minval=1) // f_rma(_src, _length) => _length_adjusted = _length < 1 ? 1 : _length alpha = _length_adjusted sum = 0.0 sum := (_src + (alpha - 1) * nz(sum[1])) / alpha f_rsi(_src, _length) => _output = 0.00 _length_adjusted = _length < 0 ? 0 : _length u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change rs = f_rma(u, _length) / f_rma(d, _length) res = 100 - 100 / (1 + rs) res _rsi = f_rsi(src, length) // MACD _fastLength = input(12 , title = "MACD Fast Length") _slowlength = input(26 , title = "MACD Slow Length") _signalLength = input(9 , title = "MACD Signal Length") _macd = f_ema(close, _fastLength) - f_ema(close, _slowlength) _signal = f_ema(_macd, _signalLength) _macdhist = _macd - _signal // Inputs on Tangent Function : tangentdiff(_src) => nz((_src - _src[1]) / _src[1] ) // Deep Learning Activation Function (Tanh) : ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v)) // DEEP LEARNING // INPUTS : input_1 = tangentdiff(volume) input_2 = tangentdiff(dnband) input_3 = tangentdiff(e_r) input_4 = tangentdiff(upband) input_5 = tangentdiff(_rsi) input_6 = tangentdiff(_macdhist) // LAYERS : // Input Layers n_0 = ActivationFunctionTanh(input_1 + 0) n_1 = ActivationFunctionTanh(input_2 + 0) n_2 = ActivationFunctionTanh(input_3 + 0) n_3 = ActivationFunctionTanh(input_4 + 0) n_4 = ActivationFunctionTanh(input_5 + 0) n_5 = ActivationFunctionTanh(input_6 + 0) // Hidden Layers n_6 = ActivationFunctionTanh( -2.580743 * n_0 + -1.883627 * n_1 + -3.512462 * n_2 + -0.891063 * n_3 + -0.767728 * n_4 + -0.542699 * n_5 + 0.221093) n_7 = ActivationFunctionTanh( -0.131977 * n_0 + -1.543499 * n_1 + 0.019450 * n_2 + 0.041301 * n_3 + -0.926690 * n_4 + -0.797512 * n_5 + -1.804061) n_8 = ActivationFunctionTanh( -0.587905 * n_0 + -7.528007 * n_1 + -5.273207 * n_2 + 1.633836 * n_3 + 6.099666 * n_4 + 3.509443 * n_5 + -4.384254) n_9 = ActivationFunctionTanh( -1.026331 * n_0 + -1.289491 * n_1 + -1.702887 * n_2 + -1.052681 * n_3 + -1.031452 * n_4 + -0.597999 * n_5 + -1.178839) n_10 = ActivationFunctionTanh( -5.393730 * n_0 + -2.486204 * n_1 + 3.655614 * n_2 + 1.051512 * n_3 + -2.763198 * n_4 + 6.062295 * n_5 + -6.367982) n_11 = ActivationFunctionTanh( 1.246882 * n_0 + -1.993206 * n_1 + 1.599518 * n_2 + 1.871801 * n_3 + 0.294797 * n_4 + -0.607512 * n_5 + -3.092821) n_12 = ActivationFunctionTanh( -2.325161 * n_0 + -1.433500 * n_1 + -2.928094 * n_2 + -0.715416 * n_3 + -0.914663 * n_4 + -0.485397 * n_5 + -0.411227) n_13 = ActivationFunctionTanh( -0.350585 * n_0 + -0.810108 * n_1 + -1.756149 * n_2 + -0.567176 * n_3 + -0.954021 * n_4 + -1.027830 * n_5 + -1.349766) // Output Layer _output = ActivationFunctionTanh(2.588784 * n_6 + 0.100819 * n_7 + -5.305373 * n_8 + 1.167093 * n_9 + 3.770143 * n_10 + 1.269190 * n_11 + 2.090862 * n_12 + 0.839791 * n_13 + -0.196165) _chg_src = tangentdiff(src) * 100 _seed = (_output - _chg_src) // BEGIN ACTUAL STRATEGY length1 = input(title="RSI Period", type=input.integer, defval=21) mult = input(title="RSI Multiplier", type=input.float, step=0.1, defval=4.0) wicks = input(title="Take Wicks into Account ?", type=input.bool, defval=false) showLabels = input(title="Show Buy/Sell Labels ?", type=input.bool, defval=true) srsi = mult* rsi(_seed ,length1) longStop = hl2 - srsi longStopPrev = nz(longStop[1], longStop) longStop := (wicks ? low[1] : close[1]) > longStopPrev ? max(longStop, longStopPrev) : longStop shortStop = hl2 + srsi shortStopPrev = nz(shortStop[1], shortStop) shortStop := (wicks ? high[1] : close[1]) < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop dir = 1 dir := nz(dir[1], dir) dir := dir == -1 and (wicks ? high : close) > shortStopPrev ? 1 : dir == 1 and (wicks ? low : close) < longStopPrev ? -1 : dir longColor = color.green shortColor = color.red plot(dir == 1 ? longStop : na, title="Long Stop", style=plot.style_linebr, linewidth=2, color=longColor) buySignal = dir == 1 and dir[1] == -1 plotshape(buySignal ? longStop : na, title="Long Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=longColor, transp=0) plotshape(buySignal and showLabels ? longStop : na, title="Buy Label", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=longColor, textcolor=color.white, transp=0) plot(dir == 1 ? na : shortStop, title="Short Stop", style=plot.style_linebr, linewidth=2, color=shortColor) sellSignal = dir == -1 and dir[1] == 1 plotshape(sellSignal ? shortStop : na, title="Short Stop Start", location=location.absolute, style=shape.circle, size=size.tiny, color=shortColor, transp=0) plotshape(sellSignal and showLabels ? shortStop : na, title="Sell Label", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=shortColor, textcolor=color.white, transp=0) if testPeriod() and buySignal strategy.entry("Long",strategy.long) if testPeriod() and sellSignal strategy.entry("Short",strategy.short)