Esta estratégia integra múltiplos indicadores técnicos como o IMACD, EMA e Ichimoku para construir um modelo abrangente de árvore de decisão para gerar sinais de negociação.
Signo longo: Quando o IMACD é uma cor específica e a EMA 40 está acima do topo da nuvem, vá longo
Quando o IMACD estiver em vermelho e a EMA 40 estiver abaixo do fundo das nuvens, vá para curto
Soluções de risco: Otimize as configurações dos parâmetros, ajuste o comprimento da EMA, simplifique o fluxo de trabalho.
Esta estratégia identifica tendências usando vários indicadores para construir um modelo de árvore de decisão para gerar sinais de negociação. Os prós são sinais de alta qualidade e precisos. Consiste em espaço para otimização progressiva. Requer foco no ajuste de parâmetros e stop loss para controlar riscos para retornos constantes a longo prazo.
/*backtest start: 2024-01-14 00:00:00 end: 2024-01-21 00:00:00 period: 30m basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Decision Tree Strategy: IMACD, EMA and Ichimoku [cryptoonchain]", overlay=true) lengthMA = input(34, title="Length MA") lengthSignal = input(9, title="Length Signal") conversionPeriods = input.int(9, minval=1, title="Conversion Line Length") basePeriods = input.int(26, minval=1, title="Base Line Length") laggingSpan2Periods = input.int(52, minval=1, title="Leading Span B Length") displacement = input.int(26, minval=1, title="Lagging Span") emaLength = input(40, title="EMA Length") // Added user-configurable EMA length calc_smma(src, len) => smma = float(na) smma := na(smma[1]) ? ta.sma(src, len) : (smma[1] * (len - 1) + src) / len smma calc_zlema(src, length) => ema1 = ta.ema(src, length) ema2 = ta.ema(ema1, length) d = ema1 - ema2 ema1 + d src = ohlc4 hi = calc_smma(high, lengthMA) lo = calc_smma(low, lengthMA) mi = calc_zlema(src, lengthMA) md = (mi > hi) ? (mi - hi) : (mi < lo) ? (mi - lo) : 0 sb = ta.sma(md, lengthSignal) sh = md - sb mdc = src > mi ? (src > hi ? color.rgb(128, 255, 0, 26) : color.green) : (src < lo ? color.red : color.orange) colorCondition = color.rgb(128, 255, 0, 26) conversionLine = math.avg(ta.lowest(conversionPeriods), ta.highest(conversionPeriods)) baseLine = math.avg(ta.lowest(basePeriods), ta.highest(basePeriods)) leadLine1 = math.avg(conversionLine, baseLine) leadLine2 = math.avg(ta.lowest(laggingSpan2Periods), ta.highest(laggingSpan2Periods)) // Use user-configurable length for EMA ema40 = ta.ema(close, emaLength) ebc = input(false, title="Enable bar colors") barcolor(ebc ? mdc : na) conversionLinePlot = plot(conversionLine, color=#2962FF, title="Conversion Line", display=display.none) baseLinePlot = plot(baseLine, color=#B71C1C, title="Base Line", display=display.none) laggingSpanPlot = plot(close, offset=-displacement + 1, color=#43A047, title="Lagging Span", display=display.none) leadLine1Plot = plot(leadLine1, offset=displacement - 1, color=#A5D6A7, title="Leading Span A", display=display.none) leadLine2Plot = plot(leadLine2, offset=displacement - 1, color=#EF9A9A, title="Leading Span B", display=display.none) kumoCloudUpperLinePlot = plot(leadLine1 > leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Upper Line", display=display.none) kumoCloudLowerLinePlot = plot(leadLine1 < leadLine2 ? leadLine1 : leadLine2, offset=displacement - 1, title="Kumo Cloud Lower Line", display=display.none) fill(kumoCloudUpperLinePlot, kumoCloudLowerLinePlot, color=leadLine1 > leadLine2 ? color.green : color.red) a = (leadLine1 > leadLine2 ? leadLine1 : leadLine2) b = (leadLine1 < leadLine2 ? leadLine1 : leadLine2) if mdc == colorCondition and ema40 > a[displacement - 1] strategy.entry("Long", strategy.long) if mdc == color.red and ema40 < b[displacement - 1] strategy.entry("Short", strategy.short)