Esta é uma estratégia de negociação quantitativa que combina o uso da teoria fractal de Bill Williams
A estratégia primeiro calcula os fractais de Williams para determinar se o fractal atual está aumentando ou diminuindo. Se for um fractal crescente, acredita-se que a tendência atual é ascendente.
Em seguida, desenha as linhas de suporte e resistência do indicador ZZ com base nos pontos do fractal. Se o preço atravessar a linha de resistência correspondente ao fractal crescente, vá longo. Se o preço atravessar a linha de suporte correspondente ao fractal em queda, vá curto.
Através de tal combinação, é possível captar as mudanças das tendências em tempo útil e implementar transações seguindo a tendência.
Esta estratégia combina dois métodos de análise técnica diferentes - fractais de Williams e indicadores ZZ - para descobrir mais oportunidades de negociação.
O indicador ZZ pode filtrar algumas falhas para evitar perdas desnecessárias.
Em geral, esta estratégia considera tanto o julgamento da tendência como as seleções específicas de pontos de entrada para equilibrar riscos e retornos.
O maior risco desta estratégia é que os julgamentos fractais e o indicador ZZ possam emitir sinais de negociação errados, levando a perdas desnecessárias.
Além disso, a forma como os fractais são calculados pode levar a julgamentos errôneos se o prazo for definido incorretamente.
Para reduzir estes riscos, ajustar adequadamente os parâmetros de cálculo dos fractais e aumentar as condições de filtragem para reduzir os sinais errôneos.
Esta estratégia pode ser melhorada nos seguintes aspectos:
Adicionar filtros de indicadores de impulso, como MACD ou Bollinger Bands para evitar algumas falhas.
Otimizar as definições dos parâmetros fractais e ajustar o cálculo dos máximos e mínimos e encurtar o período de tempo para obter julgamentos de tendência mais precisos.
Aumentar os algoritmos de aprendizagem de máquina para julgar a precisão da tendência e evitar limitações humanas.
Adicionar um mecanismo adaptativo de stop loss baseado na volatilidade do mercado.
Usar algoritmos de aprendizagem profunda para otimizar as configurações gerais de parâmetros.
Ao combinar habilmente a teoria fractal de Williams
/*backtest start: 2023-12-01 00:00:00 end: 2023-12-31 23:59:59 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy(title = "robotrading ZZ-8 fractals", shorttitle = "ZZ-8", overlay = true, default_qty_type = strategy.percent_of_equity, initial_capital = 100, default_qty_value = 100, commission_value = 0.1) //Settings needlong = input(true, defval = true, title = "Long") needshort = input(false, defval = true, title = "Short") filterBW = input(false, title="filter Bill Williams Fractals") showll = input(true, title = "Show levels") showff = input(true, title = "Show fractals (repaint!)") showdd = input(true, title = "Show dots (repaint!)") showbg = input(false, title = "Show background") showlb = input(false, title = "Show drawdown") startTime = input(defval = timestamp("01 Jan 2000 00:00 +0000"), title = "Start Time", type = input.time, inline = "time1") finalTime = input(defval = timestamp("31 Dec 2099 23:59 +0000"), title = "Final Time", type = input.time, inline = "time1") //Variables loss = 0.0 maxloss = 0.0 equity = 0.0 truetime = true //Fractals isRegularFractal(mode) => ret = mode == 1 ? high[4] < high[3] and high[3] < high[2] and high[2] > high[1] and high[1] > high[0] : mode == -1 ? low[4] > low[3] and low[3] > low[2] and low[2] < low[1] and low[1] < low[0] : false isBWFractal(mode) => ret = mode == 1 ? high[4] < high[2] and high[3] <= high[2] and high[2] >= high[1] and high[2] > high[0] : mode == -1 ? low[4] > low[2] and low[3] >= low[2] and low[2] <= low[1] and low[2] < low[0] : false filteredtopf = filterBW ? isRegularFractal(1) : isBWFractal(1) filteredbotf = filterBW ? isRegularFractal(-1) : isBWFractal(-1) //Triangles plotshape(filteredtopf and showff, title='Filtered Top Fractals', style=shape.triangledown, location=location.abovebar, color= color.red, offset=-2) plotshape(filteredbotf and showff, title='Filtered Bottom Fractals', style=shape.triangleup, location=location.belowbar, color= color.lime, offset=-2) //Levels hh = 0.0 ll = 0.0 hh := filteredtopf ? high[2] : hh[1] ll := filteredbotf ? low[2] : ll[1] //Trend trend = 0 trend := high >= hh[1] ? 1 : low <= ll[1] ? -1 : trend[1] //Lines hcol = showll and hh == hh[1] and close < hh ? color.lime : na lcol = showll and ll == ll[1] and close > ll ? color.red : na plot(hh, color = hcol) plot(ll, color = lcol) //Dots // var line hline = na // if hh != hh[1] and showdd // hline := line.new(bar_index - 0, hh[0], bar_index - 2, hh[0], xloc = xloc.bar_index, extend = extend.none, style = line.style_dotted, color = color.lime, width = 1) // var line lline = na // if ll != ll[1] and showdd // lline := line.new(bar_index - 0, ll[0] - syminfo.mintick, bar_index - 2, ll[0] - syminfo.mintick, xloc = xloc.bar_index, extend = extend.none, style = line.style_dotted, color = color.red, width = 1) //Background bgcol = showbg == false ? na : trend == 1 ? color.lime : trend == -1 ? color.red : na bgcolor(bgcol, transp = 80) //Orders if hh > 0 and needlong strategy.entry("Long", strategy.long, na, stop = hh, when = needlong and truetime) strategy.exit("Exit Long", "Long", stop = ll, when = needshort == false) if ll > 0 and startTime strategy.entry("Short", strategy.short, na, stop = ll, when = needshort and truetime) strategy.exit("Exit Short", "Short", stop = hh, when = needlong == false) if time > finalTime strategy.close_all() strategy.cancel("Long") strategy.cancel("Short") if showlb //Drawdown max = 0.0 max := max(strategy.equity, nz(max[1])) dd = (strategy.equity / max - 1) * 100 min = 100.0 min := min(dd, nz(min[1])) //Max loss size equity := strategy.position_size != strategy.position_size[1] ? strategy.equity : equity[1] loss := equity < equity[1] ? ((equity / equity[1]) - 1) * 100 : 0 maxloss := min(nz(maxloss[1]), loss) //Label min := round(min * 100) / 100 maxloss := round(maxloss * 100) / 100 labeltext = "Drawdown: " + tostring(min) + "%" + "\nMax.loss " + tostring(maxloss) + "%" var label la = na label.delete(la) tc = min > -100 ? color.white : color.red osx = timenow + round(change(time)*50) osy = highest(100) la := label.new(x = osx, y = osy, text = labeltext, xloc = xloc.bar_time, yloc = yloc.price, color = color.black, style = label.style_labelup, textcolor = tc)