Это количественная торговая стратегия, основанная на отображении ежемесячной доходности.
Основная логика этой стратегии заключается в отслеживании и расчете ежемесячной и годовой производительности и ее отображении в табличном формате.
Расчет месячной и годовой доходности на основе изменения собственного капитала.
Расчет месячной и годовой доходности на основе изменения цены.
Храните ежемесячные и годовые отчеты в массивах.
Когда бар подтвержден, заполните таблицу с использованием сохраненных возвращаемых массивов для представления ежемесячного перфо.
Показать ориентировку во втором ряду таблицы, показать альфу в третьем ряду.
Таким образом, этот сценарий может четко представить ежемесячные доходы в организованной таблице, наряду с сравнением эталонов.
Основными преимуществами этой стратегии ежемесячной доходности являются:
Интуитивное отображение ежемесячных доходов.
Ясное сравнение показателей.
Альфа-расчет. Альфа-ряд показывает, превосходит ли стратегия/не превосходит ли эталон.
Пользователь может устанавливать цвета, диапазон дат, символ ориентировки и т.д. по мере необходимости.
Некоторые риски, которые следует учитывать при этой стратегии:
Нет логики торговли. Это просто показывает доходы, не включает фактические сделки.
Как и в случае с любым обратным тестом, прошлые результаты не гарантируют будущие результаты.
Возможные ошибки в расчете доходности, ошибки могут привести к неправильным месячным показателям доходности.
В целом этот сценарий в основном служит инструментом визуализации производительности. Риски могут быть смягчены путем обеспечения точности расчетов отдачи и не полагаясь исключительно на обратные тесты.
Некоторые способы улучшения этой стратегии ежемесячного возврата:
Добавьте фактическую торговую стратегию, чья производительность отображается.
Добавьте дополнительные параметры настройки эталонов, такие как символ эталонов, временные рамки и т. Д.
Улучшить форматирование таблицы для улучшения визуальных эффектов - цвета, ячейки, форматирование и т. д.
Добавьте другие показатели возврата - CAGR, коэффициент Шарпа и т. д. для дальнейшего анализа.
Это стратегия, ориентированная специально на отображение ежемесячных доходов системы и бенчмарка в табличном формате для более легкого анализа. Ее преимущества заключаются в интуитивной визуализации и сравнении стратегии с бенчмарком. Риски заключаются в отсутствии логики торговли и зависимости от бэкстеста.
/*backtest start: 2023-12-01 00:00:00 end: 2023-12-31 23:59:59 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy('Monthly Returns with Benchmark', overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=25, commission_type=strategy.commission.percent, commission_value=0.1) //////////// // Inputs // // Pivot points inputs leftBars = input(2, group = "Pivot Points") rightBars = input(1, group = "Pivot Points") // Styling inputs prec = input(2, title='Return Precision', group = "Monthly Table") from_date = input(timestamp("01 Jan 2000 00:00 +0000"), "From Date", group = "Monthly Table") prof_color = input.color(color.green, title = "Gradient Colors", group = "Monthly Table", inline = "colors") loss_color = input.color(color.red, title = "", group = "Monthly Table", inline = "colors") // Benchmark inputs use_cur = input.bool(true, title = "Use current Symbol for Benchmark", group = "Benchmark") symb_bench = input('BTC_USDT:swap', title = "Benchmark", group = "Benchmark") disp_bench = input.bool(true, title = "Display Benchmark?", group = "Benchmark") disp_alpha = input.bool(true, title = "Display Alpha?", group = "Benchmark") // Pivot Points Strategy swh = ta.pivothigh(leftBars, rightBars) swl = ta.pivotlow(leftBars, rightBars) hprice = 0.0 hprice := not na(swh) ? swh : hprice[1] lprice = 0.0 lprice := not na(swl) ? swl : lprice[1] le = false le := not na(swh) ? true : le[1] and high > hprice ? false : le[1] se = false se := not na(swl) ? true : se[1] and low < lprice ? false : se[1] if le strategy.entry('PivRevLE', strategy.long, comment='PivRevLE', stop=hprice + syminfo.mintick) if se strategy.entry('PivRevSE', strategy.short, comment='PivRevSE', stop=lprice - syminfo.mintick) plot(hprice, color=color.new(color.green, 0), linewidth=2) plot(lprice, color=color.new(color.red, 0), linewidth=2) /////////////////// // MONTHLY TABLE // new_month = month(time) != month(time[1]) new_year = year(time) != year(time[1]) eq = strategy.equity bench_eq = close // benchmark eq bench_eq_htf = request.security(symb_bench, timeframe.period, close) if (not use_cur) bench_eq := bench_eq_htf bar_pnl = eq / eq[1] - 1 bench_pnl = bench_eq / bench_eq[1] - 1 cur_month_pnl = 0.0 cur_year_pnl = 0.0 // Current Monthly P&L cur_month_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_month) ? bar_pnl : (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 // Current Yearly P&L cur_year_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_year) ? bar_pnl : (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 bench_cur_month_pnl = 0.0 bench_cur_year_pnl = 0.0 // Current Monthly P&L - Bench bench_cur_month_pnl := bar_index == 0 or (time[1] < from_date and time >= from_date) ? 0 : time >= from_date and new_month ? bench_pnl : (1 + bench_cur_month_pnl[1]) * (1 + bench_pnl) - 1 // Current Yearly P&L - Bench bench_cur_year_pnl := bar_index == 0 ? 0 : time >= from_date and (time[1] < from_date or new_year) ? bench_pnl : (1 + bench_cur_year_pnl[1]) * (1 + bench_pnl) - 1 var month_time = array.new_int(0) var year_time = array.new_int(0) var month_pnl = array.new_float(0) var year_pnl = array.new_float(0) var bench_month_pnl = array.new_float(0) var bench_year_pnl = array.new_float(0) // Filling monthly / yearly pnl arrays if array.size(month_time) > 0 if month(time) == month(array.get(month_time, array.size(month_time) - 1)) array.pop(month_pnl) array.pop(bench_month_pnl) array.pop(month_time) if array.size(year_time) > 0 if year(time) == year(array.get(year_time, array.size(year_time) - 1)) array.pop(year_pnl) array.pop(bench_year_pnl) array.pop(year_time) if (time >= from_date) array.push(month_time, time) array.push(year_time, time) array.push(month_pnl, cur_month_pnl) array.push(year_pnl, cur_year_pnl) array.push(bench_year_pnl, bench_cur_year_pnl) array.push(bench_month_pnl, bench_cur_month_pnl) // Monthly P&L Table var monthly_table = table(na) if array.size(year_pnl) > 0 and barstate.islastconfirmedhistory monthly_table := table.new(position.bottom_right, columns=15, rows=array.size(year_pnl) * 3 + 5, border_width=1) // Fill monthly performance table.cell(monthly_table, 0, 0, 'Perf', bgcolor = #999999) table.cell(monthly_table, 1, 0, 'Jan', bgcolor = #999999) table.cell(monthly_table, 2, 0, 'Feb', bgcolor = #999999) table.cell(monthly_table, 3, 0, 'Mar', bgcolor = #999999) table.cell(monthly_table, 4, 0, 'Apr', bgcolor = #999999) table.cell(monthly_table, 5, 0, 'May', bgcolor = #999999) table.cell(monthly_table, 6, 0, 'Jun', bgcolor = #999999) table.cell(monthly_table, 7, 0, 'Jul', bgcolor = #999999) table.cell(monthly_table, 8, 0, 'Aug', bgcolor = #999999) table.cell(monthly_table, 9, 0, 'Sep', bgcolor = #999999) table.cell(monthly_table, 10, 0, 'Oct', bgcolor = #999999) table.cell(monthly_table, 11, 0, 'Nov', bgcolor = #999999) table.cell(monthly_table, 12, 0, 'Dec', bgcolor = #999999) table.cell(monthly_table, 13, 0, ' ', bgcolor = #999999) table.cell(monthly_table, 14, 0, 'Year', bgcolor = #999999) max_abs_y = math.max(math.abs(array.max(year_pnl)), math.abs(array.min(year_pnl))) max_abs_m = math.max(math.abs(array.max(month_pnl)), math.abs(array.min(month_pnl))) for yi = 0 to array.size(year_pnl) - 1 by 1 table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc) table.cell(monthly_table, 13, yi + 1, ' ', bgcolor=#999999) y_color = color.from_gradient(array.get(year_pnl, yi), -max_abs_y, max_abs_y, loss_color, prof_color) table.cell(monthly_table, 14, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor=y_color) for mi = 0 to array.size(month_time) - 1 by 1 m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 m_col = month(array.get(month_time, mi)) m_color = color.from_gradient(array.get(month_pnl, mi), -max_abs_m, max_abs_m, loss_color, prof_color) table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor=m_color) // Fill benchmark performance next_row = array.size(year_pnl) + 1 if (disp_bench) table.cell(monthly_table, 0, next_row, 'Bench', bgcolor=#999999) table.cell(monthly_table, 1, next_row, 'Jan', bgcolor=#999999) table.cell(monthly_table, 2, next_row, 'Feb', bgcolor=#999999) table.cell(monthly_table, 3, next_row, 'Mar', bgcolor=#999999) table.cell(monthly_table, 4, next_row, 'Apr', bgcolor=#999999) table.cell(monthly_table, 5, next_row, 'May', bgcolor=#999999) table.cell(monthly_table, 6, next_row, 'Jun', bgcolor=#999999) table.cell(monthly_table, 7, next_row, 'Jul', bgcolor=#999999) table.cell(monthly_table, 8, next_row, 'Aug', bgcolor=#999999) table.cell(monthly_table, 9, next_row, 'Sep', bgcolor=#999999) table.cell(monthly_table, 10, next_row, 'Oct', bgcolor=#999999) table.cell(monthly_table, 11, next_row, 'Nov', bgcolor=#999999) table.cell(monthly_table, 12, next_row, 'Dec', bgcolor=#999999) table.cell(monthly_table, 13, next_row, ' ', bgcolor = #999999) table.cell(monthly_table, 14, next_row, 'Year', bgcolor=#999999) max_bench_abs_y = math.max(math.abs(array.max(bench_year_pnl)), math.abs(array.min(bench_year_pnl))) max_bench_abs_m = math.max(math.abs(array.max(bench_month_pnl)), math.abs(array.min(bench_month_pnl))) for yi = 0 to array.size(year_time) - 1 by 1 table.cell(monthly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc) table.cell(monthly_table, 13, yi + 1 + next_row + 1, ' ', bgcolor=#999999) y_color = color.from_gradient(array.get(bench_year_pnl, yi), -max_bench_abs_y, max_bench_abs_y, loss_color, prof_color) table.cell(monthly_table, 14, yi + 1 + next_row + 1, str.tostring(math.round(array.get(bench_year_pnl, yi) * 100, prec)), bgcolor=y_color) for mi = 0 to array.size(month_time) - 1 by 1 m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 m_col = month(array.get(month_time, mi)) m_color = color.from_gradient(array.get(bench_month_pnl, mi), -max_bench_abs_m, max_bench_abs_m, loss_color, prof_color) table.cell(monthly_table, m_col, m_row + next_row + 1, str.tostring(math.round(array.get(bench_month_pnl, mi) * 100, prec)), bgcolor=m_color) // Fill Alpha if (disp_alpha) next_row := array.size(year_pnl) * 2 + 3 table.cell(monthly_table, 0, next_row, 'Alpha', bgcolor=#999999) table.cell(monthly_table, 1, next_row, 'Jan', bgcolor=#999999) table.cell(monthly_table, 2, next_row, 'Feb', bgcolor=#999999) table.cell(monthly_table, 3, next_row, 'Mar', bgcolor=#999999) table.cell(monthly_table, 4, next_row, 'Apr', bgcolor=#999999) table.cell(monthly_table, 5, next_row, 'May', bgcolor=#999999) table.cell(monthly_table, 6, next_row, 'Jun', bgcolor=#999999) table.cell(monthly_table, 7, next_row, 'Jul', bgcolor=#999999) table.cell(monthly_table, 8, next_row, 'Aug', bgcolor=#999999) table.cell(monthly_table, 9, next_row, 'Sep', bgcolor=#999999) table.cell(monthly_table, 10, next_row, 'Oct', bgcolor=#999999) table.cell(monthly_table, 11, next_row, 'Nov', bgcolor=#999999) table.cell(monthly_table, 12, next_row, 'Dec', bgcolor=#999999) table.cell(monthly_table, 13, next_row, '', bgcolor=#999999) table.cell(monthly_table, 14, next_row, 'Year', bgcolor=#999999) max_alpha_abs_y = 0.0 for yi = 0 to array.size(year_time) - 1 by 1 if (math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) > max_alpha_abs_y) max_alpha_abs_y := math.abs(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) max_alpha_abs_m = 0.0 for mi = 0 to array.size(month_pnl) - 1 by 1 if (math.abs(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) > max_alpha_abs_m) max_alpha_abs_m := math.abs(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) for yi = 0 to array.size(year_time) - 1 by 1 table.cell(monthly_table, 0, yi + 1 + next_row + 1, str.tostring(year(array.get(year_time, yi))), bgcolor=#cccccc) table.cell(monthly_table, 13, yi + 1 + next_row + 1, ' ', bgcolor=#999999) y_color = color.from_gradient(array.get(year_pnl, yi) - array.get(bench_year_pnl, yi), -max_alpha_abs_y, max_alpha_abs_y, loss_color, prof_color) table.cell(monthly_table, 14, yi + 1 + next_row + 1, str.tostring(math.round((array.get(year_pnl, yi) - array.get(bench_year_pnl, yi)) * 100, prec)), bgcolor=y_color) for mi = 0 to array.size(month_time) - 1 by 1 m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 m_col = month(array.get(month_time, mi)) m_color = color.from_gradient(array.get(month_pnl, mi) - array.get(bench_month_pnl, mi), -max_alpha_abs_m, max_alpha_abs_m, loss_color, prof_color) table.cell(monthly_table, m_col, m_row + next_row + 1, str.tostring(math.round((array.get(month_pnl, mi) - array.get(bench_month_pnl, mi)) * 100, prec)), bgcolor=m_color)