Chiến lược này được gọi làXu hướng chéo trung bình động theo chiến lượcNó sử dụng thập tự vàng và thập tự chết của nhiều đường trung bình động để xác định các điểm chuyển đổi thị trường và theo dõi xu hướng.
Tính toán nhiều đường trung bình động với các thông số khác nhau, ví dụ: MA ((5), MA ((10) vv.
Khi MA ngắn hơn vượt qua MA dài hơn, một tín hiệu mua được tạo ra.
Khi MA ngắn hơn vượt qua dưới MA dài hơn, một tín hiệu bán được tạo ra.
Chức năng giao thoa đánh giá giao thoa. Thời gian MA có thể được cấu hình linh hoạt.
Thiết lập nhiều MA như MA ((8), MA ((13), MA ((21) vv.
Khi MA ((8) vượt qua trên MA ((13), đi dài.
Khi MA ((8) vượt dưới MA ((13), đi ngắn.
Các loại MA như EMA, SMA có thể được sử dụng.
Thêm các bộ lọc khác để tránh các sự đột phá sai.
Theo xu hướng tránh giao dịch ngược xu hướng.
Thời gian MA linh hoạt phù hợp với các chu kỳ khác nhau.
Các chỉ số bổ sung có thể lọc tín hiệu.
Việc rút tiền nhỏ hơn, ngăn chặn rủi ro hạn chế hơn nữa.
Rủi ro mất mát kéo dài trong xu hướng giảm kéo dài.
Các thông số MA kém có thể bỏ lỡ giao dịch.
Cần dừng lại kịp thời để hạn chế việc rút tiền.
Phí cũng ảnh hưởng đến lợi nhuận.
Chiến lược theo xu hướng chéo MA theo xu hướng lợi nhuận. Tối ưu hóa tham số cung cấp hiệu ứng ngắn hạn và dài hạn. Phân tích kỹ thuật bổ sung cải thiện hiệu suất. Các điểm dừng nghiêm ngặt là điều cần thiết để kiểm soát rủi ro. Chi phí giao dịch cũng nên được xem xét khi giao dịch trực tiếp.
/*backtest start: 2023-09-07 00:00:00 end: 2023-09-08 09:00:00 period: 10m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 //Converted to strategy by shawnteoh strategy(title = "MA Emperor insiliconot Strategy" , overlay=true, pyramiding=1, precision=8) strat_dir_input = input(title="Strategy Direction", defval="long", options=["long", "short", "all"]) strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all strategy.risk.allow_entry_in(strat_dir_value) // Testing start dates testStartYear = input(2020, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) //Stop date if you want to use a specific range of dates testStopYear = input(2030, "Backtest Stop Year") testStopMonth = input(12, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) // Order size orderQty = input(1, "Order quantity", type = float) // Plot indicator plotInd = input(false, "Plot indicators?", type = bool) testPeriod() => true haClose = close haOpen = open haHigh = high haLow = low haClose := (open + high + low + close) / 4 haOpen := (nz(haOpen[1]) + nz(haClose[1])) / 2 haHigh := max(high, max(haOpen, haClose)) haLow := min(low , min(haOpen, haClose)) ssrc = close ha = false o = ha ? haOpen : open c = ha ? haClose : close h = ha ? haHigh : high l = ha ? haLow : low ssrc := ssrc == close ? ha ? haClose : c : ssrc ssrc := ssrc == open ? ha ? haOpen : o : ssrc ssrc := ssrc == high ? ha ? haHigh : h : ssrc ssrc := ssrc == low ? ha ? haLow : l : ssrc ssrc := ssrc == hl2 ? ha ? (haHigh + haLow) / 2 : hl2 : ssrc ssrc := ssrc == hlc3 ? ha ? (haHigh + haLow + haClose) / 3 : hlc3 : ssrc ssrc := ssrc == ohlc4 ? ha ? (haHigh + haLow + haClose+ haOpen) / 4 : ohlc4 : ssrc type = input(defval = "EMA", title = "Type", options = ["Butterworth_2Pole", "DEMA", "EMA", "Gaussian", "Geometric_Mean", "LowPass", "McGuinley", "SMA", "Sine_WMA", "Smoothed_MA", "Super_Smoother", "Triangular_MA", "Wilders", "Zero_Lag"]) len1=input(8, title ="MA 1") len2=input(13, title = "MA 2") len3=input(21, title = "MA 3") len4=input(55, title = "MA 4") len5=input(89, title = "MA 5") lenrib=input(120, title = "IB") lenrib2=input(121, title = "2B") lenrib3=input(200, title = "21b") lenrib4=input(221, title = "22b") onOff1 = input(defval=true, title="Enable 1") onOff2 = input(defval=true, title="Enable 2") onOff3 = input(defval=true, title="Enable 3") onOff4 = input(defval=false, title="Enable 4") onOff5 = input(defval=false, title="Enable 5") onOff6 = input(defval=false, title="Enable 6") onOff7 = input(defval=false, title="Enable 7") onOff8 = input(defval=false, title="Enable x") onOff9 = input(defval=false, title="Enable x") gauss_poles = input(3, "*** Gaussian poles ***", minval = 1, maxval = 14) linew = 2 shapes = false variant_supersmoother(src,len) => Pi = 2 * asin(1) a1 = exp(-1.414* Pi / len) b1 = 2*a1*cos(1.414* Pi / len) c2 = b1 c3 = (-a1)*a1 c1 = 1 - c2 - c3 v9 = 0.0 v9 := c1*(src + nz(src[1])) / 2 + c2*nz(v9[1]) + c3*nz(v9[2]) v9 variant_smoothed(src,len) => v5 = 0.0 v5 := na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len v5 variant_zerolagema(src, len) => price = src l = (len - 1) / 2 d = (price + (price - price[l])) z = ema(d, len) z variant_doubleema(src,len) => v2 = ema(src, len) v6 = 2 * v2 - ema(v2, len) v6 variant_WiMA(src, length) => MA_s= nz(src) MA_s:=(src + nz(MA_s[1] * (length-1)))/length MA_s fact(num)=> a = 1 nn = num <= 1 ? 1 : num for i = 1 to nn a := a * i a getPoles(f, Poles, alfa)=> filt = f sign = 1 results = 0 + n//tv series spoofing for r = 1 to max(min(Poles, n),1) mult = fact(Poles) / (fact(Poles - r) * fact(r)) matPo = pow(1 - alfa, r) prev = nz(filt[r-1],0) sum = sign * mult * matPo * prev results := results + sum sign := sign * -1 results := results - n results variant_gauss(Price, Lag, Poles)=> Pi = 2 * asin(1) beta = (1 - cos(2 * Pi / Lag)) / ( pow (sqrt(2), 2.0 / Poles) - 1) alfa = -beta + sqrt(beta * beta + 2 * beta) pre = nz(Price, 0) * pow(alfa, Poles) filter = pre result = n > 0 ? getPoles(nz(filter[1]), Poles, alfa) : 0 filter := pre + result variant_mg(src, len)=> mg = 0.0 mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4)) mg variant_sinewma(src, length) => PI = 2 * asin(1) sum = 0.0 weightSum = 0.0 for i = 0 to length - 1 weight = sin(i * PI / (length + 1)) sum := sum + nz(src[i]) * weight weightSum := weightSum + weight sinewma = sum / weightSum sinewma variant_geoMean(price, per)=> gmean = pow(price, 1.0/per) gx = for i = 1 to per-1 gmean := gmean * pow(price[i], 1.0/per) gmean ggx = n > per? gx : price ggx variant_butt2pole(pr, p1)=> Pi = 2 * asin(1) DTR = Pi / 180 a1 = exp(-sqrt(2) * Pi / p1) b1 = 2 * a1 * cos(DTR * (sqrt(2) * 180 / p1)) cf1 = (1 - b1 + a1 * a1) / 4 cf2 = b1 cf3 = -a1 * a1 butt_filt = pr butt_filt := cf1 * (pr + 2 * nz(pr[1]) + nz(pr[2])) + cf2 * nz(butt_filt[1]) + cf3 * nz(butt_filt[2]) variant_lowPass(src, len)=> LP = src sr = src a = 2.0 / (1.0 + len) LP := (a - 0.25 * a * a) * sr + 0.5 * a * a * nz(sr[1]) - (a - 0.75 * a * a) * nz(sr[2]) + 2.0 * (1.0 - a) * nz(LP[1]) - (1.0 - a) * (1.0 - a) * nz(LP[2]) LP variant_sma(src, len) => sum = 0.0 for i = 0 to len - 1 sum := sum + src[i] / len sum variant_trima(src, length) => len = ceil((length + 1) * 0.5) trima = sum(sma(src, len), len)/len trima variant(type, src, len) => type=="EMA" ? ema(src, len) : type=="LowPass" ? variant_lowPass(src, len) : type=="Linreg" ? linreg(src, len, 0) : type=="Gaussian" ? variant_gauss(src, len, gauss_poles) : type=="Sine_WMA" ? variant_sinewma(src, len) : type=="Geometric_Mean" ? variant_geoMean(src, len) : type=="Butterworth_2Pole" ? variant_butt2pole(src, len) : type=="Smoothed_MA" ? variant_smoothed(src, len) : type=="Triangular_MA" ? variant_trima(src, len) : type=="McGuinley" ? variant_mg(src, len) : type=="DEMA" ? variant_doubleema(src, len): type=="Super_Smoother" ? variant_supersmoother(src, len) : type=="Zero_Lag" ? variant_zerolagema(src, len) : type=="Wilders"? variant_WiMA(src, len) : variant_sma(src, len) c1=#44E2D6 c2=#DDD10D c3=#0AA368 c4=#E0670E c5=#AB40B2 cRed = #F93A00 ma1 = variant(type, ssrc, len1) ma2 = variant(type, ssrc, len2) ma3 = variant(type, ssrc, len3) ma4 = variant(type, ssrc, len4) ma5 = variant(type, ssrc, len5) ma6 = variant(type, ssrc, lenrib) ma7 = variant(type, ssrc, lenrib2) ma8 = variant(type, ssrc, lenrib3) ma9 = variant(type, ssrc, lenrib4) col1 = c1 col2 = c2 col3 = c3 col4 = c4 col5 = c5 p1 = plot(onOff1 ? ma1 : na, title = "MA 1", color = col1, linewidth = linew, style = linebr) p2 = plot(onOff2 ? ma2 : na, title = "MA 2", color = col2, linewidth = linew, style = linebr) p3 = plot(onOff3 ? ma3 : na, title = "MA 3", color = col3, linewidth = linew, style = linebr) p4 = plot(onOff4 ? ma4 : na, title = "MA 4", color = col4, linewidth = linew, style = linebr) p5 = plot(onOff5 ? ma5 : na, title = "MA 5", color = col5, linewidth = linew, style = linebr) p6 = plot(onOff6 ? ma6 : na, title = "MA 6", color = col5, linewidth = linew, style = linebr) p7 = plot(onOff7 ? ma7 : na, title = "MA 7", color = col5, linewidth = linew, style = linebr) p8 = plot(onOff8 ? ma8 : na, title = "MA 8", color = col5, linewidth = linew, style = linebr) p9 = plot(onOff9 ? ma9 : na, title = "MA 9", color = col5, linewidth = linew, style = linebr) longCond = crossover(ma2, ma3) if longCond and testPeriod() strategy.entry("buy", strategy.long, qty = orderQty, when = open > ma2[1]) shortCond = crossunder(ma2, ma3) if shortCond and testPeriod() strategy.entry("sell", strategy.short, qty = orderQty, when = open < ma2[1]) plotshape(series=plotInd? longCond : na, title="P", style=shape.triangleup, location=location.belowbar, color=green, text="P", size=size.small) plotshape(series=plotInd? shortCond : na, title="N", style=shape.triangledown, location=location.abovebar, color=red, text="N", size=size.small)