Chiến lược này là một trong những chiến lược chéo trung bình di chuyển điển hình bằng cách tính toán các trung bình di chuyển của các chu kỳ khác nhau và phát ra tín hiệu giao dịch khi các trung bình di chuyển của các chu kỳ dài hơn trên các trung bình di chuyển có chu kỳ ngắn hơn. Chiến lược này hỗ trợ cả giao dịch mua và bán, cho phép giao dịch hai chiều.
Chiến lược này dựa trên sự giao thoa giữa các đường trung bình di chuyển khác nhau để đánh giá xu hướng thị trường và phát ra tín hiệu giao dịch. Chiến lược sử dụng ba đường trung bình di chuyển 8 chu kỳ, 13 chu kỳ và 21 chu kỳ, trong đó đường 8 chu kỳ là đường ngắn hơn và đường 21 chu kỳ là đường dài hơn.
Khi thực hiện giao dịch cụ thể, chiến lược này cũng thêm một điều kiện phán đoán để tránh giao dịch bị đặt trong trường hợp biến động. Chỉ đặt lệnh khi giá tròn K line cao hơn điểm giao điểm của dấu hiệu “thanh nhiều” hoặc dưới dấu hiệu “thanh thấp”. Điều này có thể lọc một số tín hiệu giả.
Chiến lược này có tư duy tổng thể rõ ràng, xác định mối quan hệ xu hướng dài hạn và ngắn hạn thông qua các đường trung bình di chuyển đơn giản và hiệu quả, nắm bắt các cơ hội chuyển động. Chiến lược có thể giao dịch hai chiều, đồng thời dễ hiểu và tối ưu hóa. Nhưng cũng có một số rủi ro cần được cải thiện hơn nữa, chẳng hạn như không thể xử lý hiệu quả các tình huống cụ thể và thiếu rủi ro giao dịch kiểm soát dừng lỗ.
/*backtest
start: 2022-12-05 00:00:00
end: 2023-12-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=3
//Converted to strategy by shawnteoh
strategy(title = "MA Emperor insiliconot Strategy" , overlay=true, pyramiding=1, precision=8)
strat_dir_input = input(title="Strategy Direction", defval="long", options=["long", "short", "all"])
strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all
strategy.risk.allow_entry_in(strat_dir_value)
// Testing start dates
testStartYear = input(2020, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
//Stop date if you want to use a specific range of dates
testStopYear = input(2030, "Backtest Stop Year")
testStopMonth = input(12, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
// Order size
orderQty = input(1, "Order quantity", type = float)
// Plot indicator
plotInd = input(false, "Plot indicators?", type = bool)
testPeriod() =>
time >= testPeriodStart and time <= testPeriodStop ? true : false
haClose = close
haOpen = open
haHigh = high
haLow = low
haClose := (open + high + low + close) / 4
haOpen := (nz(haOpen[1]) + nz(haClose[1])) / 2
haHigh := max(high, max(haOpen, haClose))
haLow := min(low , min(haOpen, haClose))
ssrc = close
ha = false
o = ha ? haOpen : open
c = ha ? haClose : close
h = ha ? haHigh : high
l = ha ? haLow : low
ssrc := ssrc == close ? ha ? haClose : c : ssrc
ssrc := ssrc == open ? ha ? haOpen : o : ssrc
ssrc := ssrc == high ? ha ? haHigh : h : ssrc
ssrc := ssrc == low ? ha ? haLow : l : ssrc
ssrc := ssrc == hl2 ? ha ? (haHigh + haLow) / 2 : hl2 : ssrc
ssrc := ssrc == hlc3 ? ha ? (haHigh + haLow + haClose) / 3 : hlc3 : ssrc
ssrc := ssrc == ohlc4 ? ha ? (haHigh + haLow + haClose+ haOpen) / 4 : ohlc4 : ssrc
type = input(defval = "EMA", title = "Type", options = ["Butterworth_2Pole", "DEMA", "EMA", "Gaussian", "Geometric_Mean", "LowPass", "McGuinley", "SMA", "Sine_WMA", "Smoothed_MA", "Super_Smoother", "Triangular_MA", "Wilders", "Zero_Lag"])
len1=input(8, title ="MA 1")
len2=input(13, title = "MA 2")
len3=input(21, title = "MA 3")
len4=input(55, title = "MA 4")
len5=input(89, title = "MA 5")
lenrib=input(120, title = "IB")
lenrib2=input(121, title = "2B")
lenrib3=input(200, title = "21b")
lenrib4=input(221, title = "22b")
onOff1 = input(defval=true, title="Enable 1")
onOff2 = input(defval=true, title="Enable 2")
onOff3 = input(defval=true, title="Enable 3")
onOff4 = input(defval=false, title="Enable 4")
onOff5 = input(defval=false, title="Enable 5")
onOff6 = input(defval=false, title="Enable 6")
onOff7 = input(defval=false, title="Enable 7")
onOff8 = input(defval=false, title="Enable x")
onOff9 = input(defval=false, title="Enable x")
gauss_poles = input(3, "*** Gaussian poles ***", minval = 1, maxval = 14)
linew = 2
shapes = false
variant_supersmoother(src,len) =>
Pi = 2 * asin(1)
a1 = exp(-1.414* Pi / len)
b1 = 2*a1*cos(1.414* Pi / len)
c2 = b1
c3 = (-a1)*a1
c1 = 1 - c2 - c3
v9 = 0.0
v9 := c1*(src + nz(src[1])) / 2 + c2*nz(v9[1]) + c3*nz(v9[2])
v9
variant_smoothed(src,len) =>
v5 = 0.0
v5 := na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len
v5
variant_zerolagema(src, len) =>
price = src
l = (len - 1) / 2
d = (price + (price - price[l]))
z = ema(d, len)
z
variant_doubleema(src,len) =>
v2 = ema(src, len)
v6 = 2 * v2 - ema(v2, len)
v6
variant_WiMA(src, length) =>
MA_s= nz(src)
MA_s:=(src + nz(MA_s[1] * (length-1)))/length
MA_s
fact(num)=>
a = 1
nn = num <= 1 ? 1 : num
for i = 1 to nn
a := a * i
a
getPoles(f, Poles, alfa)=>
filt = f
sign = 1
results = 0 + n//tv series spoofing
for r = 1 to max(min(Poles, n),1)
mult = fact(Poles) / (fact(Poles - r) * fact(r))
matPo = pow(1 - alfa, r)
prev = nz(filt[r-1],0)
sum = sign * mult * matPo * prev
results := results + sum
sign := sign * -1
results := results - n
results
variant_gauss(Price, Lag, Poles)=>
Pi = 2 * asin(1)
beta = (1 - cos(2 * Pi / Lag)) / ( pow (sqrt(2), 2.0 / Poles) - 1)
alfa = -beta + sqrt(beta * beta + 2 * beta)
pre = nz(Price, 0) * pow(alfa, Poles)
filter = pre
result = n > 0 ? getPoles(nz(filter[1]), Poles, alfa) : 0
filter := pre + result
variant_mg(src, len)=>
mg = 0.0
mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
mg
variant_sinewma(src, length) =>
PI = 2 * asin(1)
sum = 0.0
weightSum = 0.0
for i = 0 to length - 1
weight = sin(i * PI / (length + 1))
sum := sum + nz(src[i]) * weight
weightSum := weightSum + weight
sinewma = sum / weightSum
sinewma
variant_geoMean(price, per)=>
gmean = pow(price, 1.0/per)
gx = for i = 1 to per-1
gmean := gmean * pow(price[i], 1.0/per)
gmean
ggx = n > per? gx : price
ggx
variant_butt2pole(pr, p1)=>
Pi = 2 * asin(1)
DTR = Pi / 180
a1 = exp(-sqrt(2) * Pi / p1)
b1 = 2 * a1 * cos(DTR * (sqrt(2) * 180 / p1))
cf1 = (1 - b1 + a1 * a1) / 4
cf2 = b1
cf3 = -a1 * a1
butt_filt = pr
butt_filt := cf1 * (pr + 2 * nz(pr[1]) + nz(pr[2])) + cf2 * nz(butt_filt[1]) + cf3 * nz(butt_filt[2])
variant_lowPass(src, len)=>
LP = src
sr = src
a = 2.0 / (1.0 + len)
LP := (a - 0.25 * a * a) * sr + 0.5 * a * a * nz(sr[1]) - (a - 0.75 * a * a) * nz(sr[2]) + 2.0 * (1.0 - a) * nz(LP[1]) - (1.0 - a) * (1.0 - a) * nz(LP[2])
LP
variant_sma(src, len) =>
sum = 0.0
for i = 0 to len - 1
sum := sum + src[i] / len
sum
variant_trima(src, length) =>
len = ceil((length + 1) * 0.5)
trima = sum(sma(src, len), len)/len
trima
variant(type, src, len) =>
type=="EMA" ? ema(src, len) :
type=="LowPass" ? variant_lowPass(src, len) :
type=="Linreg" ? linreg(src, len, 0) :
type=="Gaussian" ? variant_gauss(src, len, gauss_poles) :
type=="Sine_WMA" ? variant_sinewma(src, len) :
type=="Geometric_Mean" ? variant_geoMean(src, len) :
type=="Butterworth_2Pole" ? variant_butt2pole(src, len) :
type=="Smoothed_MA" ? variant_smoothed(src, len) :
type=="Triangular_MA" ? variant_trima(src, len) :
type=="McGuinley" ? variant_mg(src, len) :
type=="DEMA" ? variant_doubleema(src, len):
type=="Super_Smoother" ? variant_supersmoother(src, len) :
type=="Zero_Lag" ? variant_zerolagema(src, len) :
type=="Wilders"? variant_WiMA(src, len) : variant_sma(src, len)
c1=#44E2D6
c2=#DDD10D
c3=#0AA368
c4=#E0670E
c5=#AB40B2
cRed = #F93A00
ma1 = variant(type, ssrc, len1)
ma2 = variant(type, ssrc, len2)
ma3 = variant(type, ssrc, len3)
ma4 = variant(type, ssrc, len4)
ma5 = variant(type, ssrc, len5)
ma6 = variant(type, ssrc, lenrib)
ma7 = variant(type, ssrc, lenrib2)
ma8 = variant(type, ssrc, lenrib3)
ma9 = variant(type, ssrc, lenrib4)
col1 = c1
col2 = c2
col3 = c3
col4 = c4
col5 = c5
p1 = plot(onOff1 ? ma1 : na, title = "MA 1", color = col1, linewidth = linew, style = linebr)
p2 = plot(onOff2 ? ma2 : na, title = "MA 2", color = col2, linewidth = linew, style = linebr)
p3 = plot(onOff3 ? ma3 : na, title = "MA 3", color = col3, linewidth = linew, style = linebr)
p4 = plot(onOff4 ? ma4 : na, title = "MA 4", color = col4, linewidth = linew, style = linebr)
p5 = plot(onOff5 ? ma5 : na, title = "MA 5", color = col5, linewidth = linew, style = linebr)
p6 = plot(onOff6 ? ma6 : na, title = "MA 6", color = col5, linewidth = linew, style = linebr)
p7 = plot(onOff7 ? ma7 : na, title = "MA 7", color = col5, linewidth = linew, style = linebr)
p8 = plot(onOff8 ? ma8 : na, title = "MA 8", color = col5, linewidth = linew, style = linebr)
p9 = plot(onOff9 ? ma9 : na, title = "MA 9", color = col5, linewidth = linew, style = linebr)
longCond = crossover(ma2, ma3)
if longCond and testPeriod()
strategy.entry("buy", strategy.long, qty = orderQty, when = open > ma2[1])
shortCond = crossunder(ma2, ma3)
if shortCond and testPeriod()
strategy.entry("sell", strategy.short, qty = orderQty, when = open < ma2[1])
plotshape(series=plotInd? longCond : na, title="P", style=shape.triangleup, location=location.belowbar, color=green, text="P", size=size.small)
plotshape(series=plotInd? shortCond : na, title="N", style=shape.triangledown, location=location.abovebar, color=red, text="N", size=size.small)