This article explains in detail a quantitative trading strategy that combines multiple technical indicators. By synthesizing signals from various indicators, it achieves effective risk control.
I. Strategy Logic
The strategy mainly includes the following components:
(1) PSAR to determine trend direction and generate basic buy/sell signals.
(2) ZigZag to confirm signal direction by identifying swings.
(3) Bollinger Bands to verify signals by detecting breakouts.
(4) MACD to further validate signals and improve accuracy.
(5) ATR to calculate dynamic stop loss for controlling risk per trade.
(6) Entering trades based on synthesized signals and criteria.
Trades are only taken when all indicators agree, which filters out false signals and improves accuracy. The ATR-based stop loss also ensures risk control for every trade.
II. Advantages of the Strategy
The biggest advantage lies in validating signals with multiple indicators, avoiding limitations of single indicators and improving reliability.
In addition, the dynamic stop loss approach is also a major advantage. It sets reasonable stop loss levels based on market volatility for proactive risk control.
Finally, the multi-indicator combinations provide rich parameter tuning space to further enhance strategy efficiency.
III. Potential Risks
However, the following risks should also be noted:
Firstly, the complexity of multiple indicators increases optimization difficulty. Improper settings can lead to overfitting.
Secondly, stop loss set too close risks being stopped out prematurely and amplifying losses.
Lastly, discrepancies can occur between indicator signals, requiring clear priority rules.
IV. Summary
In summary, this article has explained a quantitative trading strategy utilizing multi-indicator confirmation and risk control. It intelligently combines indicators for verification and risk management. But the difficulty of parameter optimization should be fully acknowledged, and the risk of stops being too tight prevented. Overall, it provides a relatively robust quantitative trading methodology.
/*backtest start: 2023-09-06 00:00:00 end: 2023-09-08 09:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © Rolan_Kruger //@version=5 strategy("PSAR BBPT ZLSMA","PBZ", overlay=true,default_qty_type = strategy.percent_of_equity, default_qty_value = 100) /////////////////////////////////////////////////////////////////////////////////////////////////////// // PSAR BUY/SELL start = input.float(title='Start', step=0.00005, defval=0.05, group = "PSAR") increment = input.float(title='Increment', step=0.00005, defval=0.05, group = "PSAR") maximum = input.float(title='Maximum', step=0.01, defval=0.13, group = "PSAR") width = input.int(title='Point Width', minval=1, defval=20, group = "PSAR") highlightStartPoints = input(title='Highlight Start Points ?', defval=false, group = "PSAR") psar = ta.sar(start, increment, maximum) dir = psar < close ? 1 : -1 psarColor = psar < close ? #3388bb : #fdcc02 plotshape(dir == 1 and dir[1] == -1 and highlightStartPoints ? psar : na, title='Buy', style=shape.labelup, location=location.absolute, size=size.normal, text='Buy', textcolor=color.new(color.white, 0), color=color.new(color.green, 0)) plotshape(dir == -1 and dir[1] == 1 and highlightStartPoints ? psar : na, title='Sell', style=shape.labeldown, location=location.absolute, size=size.normal, text='Sell', textcolor=color.new(color.white, 0), color=color.new(color.red, 0)) barcolor(dir == 1 ? color.green : color.red, display = display.none) PSAR_Buy = dir == 1 and dir[1] == -1 PSAR_Sell = dir == -1 and dir[1] == 1 //////////////////////////////////////////////////////////////////////////////////////////////////////// // ZLSMA length = input(title='Length', defval=50,group = "ZLSMA") offset = input(title='Offset', defval=0,group = "ZLSMA") src = input(close, title='Source',group = "ZLSMA") lsma = ta.linreg(src, length, offset) lsma2 = ta.linreg(lsma, length, offset) eq = lsma - lsma2 zlsma = lsma + eq plot(zlsma, color=color.new(color.yellow, 0), linewidth=3) ZLSMA_Buy = close > zlsma and open > zlsma and low > zlsma and high > zlsma ZLSMA_Sell = close < zlsma and open < zlsma and low < zlsma and high < zlsma //////////////////////////////////////////////////////////////////////////////////////////////////////// // BBPT // switch_bbpt = input.bool(false, "Switch BBPT conditionals",group ="Bull Bear Power Trend") length1 = 8 // BullTrend_hist = 0.0 BearTrend_hist = 0.0 BullTrend = (close - ta.lowest(low, 50)) / ta.atr(5) BearTrend = (ta.highest(high, 50) - close) / ta.atr(5) BearTrend2 = -1 * BearTrend Trend = BullTrend - BearTrend if BullTrend < 2 BullTrend_hist := BullTrend - 2 BullTrend_hist if BearTrend2 > -2 BearTrend_hist := BearTrend2 + 2 BearTrend_hist //alexgrover-Regression Line Formula x = bar_index y = Trend x_ = ta.sma(x, length1) y_ = ta.sma(y, length1) mx = ta.stdev(x, length1) my = ta.stdev(y, length1) c = ta.correlation(x, y, length1) slope = c * (my / mx) inter = y_ - slope * x_ reg_trend = x * slope + inter // BBPT_Buy = BearTrend_hist BBPT_Sell = BullTrend_hist if switch_bbpt BBPT_Buy := BullTrend_hist BBPT_Sell := BearTrend_hist /////////////////////////////////////////////////////////////////////////////////////////////////////// // Sessions enable_sessions = input.bool(false, "Enable Sessions for strategy", group = "Sessions") bgColor = input.bool(false, "Activate High/Low View", group = "Sessions") LondonColor = color.new(color.green, 90) NYColor = color.new(color.red, 90) AsiaColor = color.new(color.yellow, 90) SydneyColor = color.new(color.blue, 90) ///Sessions res = input.timeframe("D", "Resolution", ["D","W","M"], group = "Sessions") london = input("0300-1200:1234567", "London Session", group = "Sessions") ny = input("0800-1700:1234567", "New York Session", group = "Sessions") tokyo = input("2000-0400:1234567", "Tokyo Session", group = "Sessions") sydney = input("1700-0200:1234567", "Sydney Session", group = "Sessions") //Bars is_newbar(sess) => t = time(res, sess, "America/New_York") na(t[1]) and not na(t) or t[1] < t is_session(sess) => not na(time(timeframe.period, sess, "America/New_York")) //London London = input.bool(false, "London Session") londonNewbar = is_newbar(london) londonSession = is_session(london) float londonLow = na londonLow := if londonSession if londonNewbar low else math.min(londonLow[1],low) else londonLow float londonHigh = na londonHigh := if londonSession if londonNewbar high else math.max(londonHigh[1],high) else londonHigh plotLL = plot(londonLow, color=color.new(#000000, 100)) plotLH = plot(londonHigh, color=color.new(#000000, 100)) fill(plotLL, plotLH, color = londonSession and London and bgColor ? LondonColor : na) bgcolor(londonSession and London and not bgColor ? LondonColor : na) //New York NY = input.bool(false, "New York Session") nyNewbar = is_newbar(ny) nySession = is_session(ny) float nyLow = na nyLow := if nySession if nyNewbar low else math.min(nyLow[1],low) else nyLow float nyHigh = na nyHigh := if nySession if nyNewbar high else math.max(nyHigh[1],high) else nyHigh plotNYL = plot(nyLow, color=color.new(#000000, 100)) plotNYH = plot(nyHigh, color=color.new(#000000, 100)) fill(plotNYL, plotNYH, color = nySession and NY and bgColor ? NYColor : na) bgcolor(nySession and NY and not bgColor ? NYColor : na) //Tokyo Tokyo = input.bool(false, "Tokyo Session") tokyoNewbar = is_newbar(tokyo) tokyoSession = is_session(tokyo) float tokyoLow = na tokyoLow := if tokyoSession if tokyoNewbar low else math.min(tokyoLow[1],low) else tokyoLow float tokyoHigh = na tokyoHigh := if tokyoSession if tokyoNewbar high else math.max(tokyoHigh[1],high) else tokyoHigh plotTL = plot(tokyoLow, color=color.new(#000000, 100)) plotTH = plot(tokyoHigh, color=color.new(#000000, 100)) fill(plotTL, plotTH, color = tokyoSession and Tokyo and bgColor ? AsiaColor : na) bgcolor(tokyoSession and Tokyo and not bgColor ? AsiaColor : na) //Sydney Sydney = input.bool(false, "Sydney Session") sydneyNewbar = is_newbar(sydney) sydneySession = is_session(sydney) float sydneyLow = na sydneyLow := if sydneySession if sydneyNewbar low else math.min(sydneyLow[1],low) else sydneyLow float sydneyHigh = na sydneyHigh := if sydneySession if sydneyNewbar high else math.max(sydneyHigh[1],high) else sydneyHigh plotSL = plot(sydneyLow, color=color.new(#000000, 100)) plotSH = plot(sydneyHigh, color=color.new(#000000, 100)) fill(plotSL, plotSH, color = sydneySession and Sydney and bgColor ? SydneyColor : na) bgcolor(sydneySession and Sydney and not bgColor ? SydneyColor : na) London_ok = London and londonSession NY_ok = NY and nySession Tokyo_ok = Tokyo and tokyoSession Sydney_ok = Sydney and sydneySession in_session = true if London_ok or NY_ok or Tokyo_ok or Sydney_ok and enable_sessions in_session := true else if enable_sessions == true in_session := false /////////////////////////////////////////////////////////////////////////////////////////////////////// // EMA Filter ema_filter = input.bool(false, "Enable EMA filter", group = "EMA") ema_lenght = input.int(50, "EMA lenght", group = "EMA") ema1 = ta.ema(close, ema_lenght) plot(ema1, "EMA", color.white, 3) EMA_Buy = true EMA_Sell = true if ema_filter == true EMA_Buy := close > ema1 EMA_Sell := ema1 > close /////////////////////////////////////////////////////////////////////////////////////////////////////// // ZLSMA angle calc zlsma_angle_filter = input.bool(true, "ZLSMA angle filter", group = "ZLSMA") ZLSMA_Up = true ZLSMA_Down = true if zlsma_angle_filter == true ZLSMA_Up := 1 < (zlsma - zlsma[1]) ZLSMA_Down := -1 > (zlsma - zlsma[1]) /////////////////////////////////////////////////////////////////////////////////////////////////////// // SL/TP // Assumes quote currency is FIAT as with BTC/USDT pair max_sl = input.float(0.2, "Max SL size in %", group = "SL/TP", minval = 0.1, tooltip = "Cancels trade if SL is too big" ) zlsma_offset = input.float(0.02, title="ZLSMA SL offset in %", group = "SL/TP",maxval = 1) tp1_multi = input.float(1, title="TP 1 multiplier", group = "SL/TP") tp2_multi = input.float(2, title="TP 2 multiplier", group = "SL/TP") tp1_persentage = input.float(0.001, "Persentage of trade close on TP1", group ="SL/TP", maxval = 100, minval = 0.001) // SL too big check sl_check = ((math.abs(close - zlsma))/close * 100) + zlsma_offset sl_ok = true if sl_check > max_sl sl_ok := false // ZLSMA SL and TP not_in_trade = strategy.position_size == 0 check_if_long = PSAR_Buy and ZLSMA_Buy and BBPT_Buy and EMA_Buy and ZLSMA_Up and sl_ok and in_session check_if_short = PSAR_Sell and ZLSMA_Sell and BBPT_Sell and EMA_Sell and ZLSMA_Down and sl_ok and in_session var float sl = 0.0 var float tp1 = 0.0 var float tp2 = 0.0 if check_if_long and not_in_trade sl := ((close - zlsma)/close * 100) + zlsma_offset tp1 := (((close - zlsma)/close * 100) + zlsma_offset)*tp1_multi tp2 := (((close - zlsma)/close * 100) + zlsma_offset)*tp2_multi if check_if_short and not_in_trade sl := ((zlsma - close)/close * 100) + zlsma_offset tp1 := (((zlsma - close)/close * 100) + zlsma_offset)*tp1_multi tp2 := (((zlsma - close)/close * 100) + zlsma_offset)*tp2_multi // FUNCTIONS // Stochastic f_stochastic() => stoch = ta.stoch(close, high, low, 14) stoch_K = ta.sma(stoch, 3) stoch_D = ta.sma(stoch_K, 3) stRD = ta.crossunder(stoch_K, stoch_D) stGD = ta.crossover(stoch_K, stoch_D) [stoch_K, stoch_D, stRD, stGD] // VARIABLES [bbMiddle, bbUpper, bbLower] = ta.bb(close, 20, 2) [stoch_K, stoch_D, stRD, stGD] = f_stochastic() // ORDERS // Active Orders // Check if strategy has open positions inLong = strategy.position_size > 0 inShort = strategy.position_size < 0 // Check if strategy reduced position size in last bar longClose = strategy.position_size < strategy.position_size[1] shortClose = strategy.position_size > strategy.position_size[1] // Entry Conditions // Enter long when during last candle these conditions are true: // Candle high is greater than upper Bollinger Band // Stochastic K line crosses under D line and is oversold longCondition = PSAR_Buy and ZLSMA_Buy and BBPT_Buy and EMA_Buy and ZLSMA_Up and sl_ok and in_session // Enter short when during last candle these conditions are true: // Candle low is lower than lower Bollinger Band // Stochastic K line crosses over D line and is overbought shortCondition = PSAR_Sell and ZLSMA_Sell and BBPT_Sell and EMA_Sell and ZLSMA_Down and sl_ok and in_session // Exit Conditions // Calculate Take Profit longTP1 = strategy.position_avg_price * ((100 + tp1)/100) longTP2 = strategy.position_avg_price * ((100 + tp2)/100) shortTP1 = strategy.position_avg_price * ((100 - tp1)/100) shortTP2 = strategy.position_avg_price * ((100 - tp2)/100) // Calculate Stop Loss // Initialise variables var float longSL = 0.0 var float shortSL = 0.0 // When not in position, set stop loss using close price which is the price used during backtesting // When in a position, check to see if the position was reduced on the last bar // If it was, set stop loss to position entry price. Otherwise, maintain last stop loss value longSL := if inLong and ta.barssince(longClose) < ta.barssince(longCondition) strategy.position_avg_price else if inLong longSL[1] else close * ((100 - sl)/100) shortSL := if inShort and ta.barssince(shortClose) < ta.barssince(shortCondition) strategy.position_avg_price else if inShort shortSL[1] else close * ((100 + sl)/100) //////////////////////////////////////////////////////////////////////////////////////////////////////// // STRATEGY EXECUTION // Manage positions if not_in_trade and longCondition strategy.entry("Long", strategy.long) strategy.exit("TP1/SL", from_entry="Long", qty_percent=tp1_persentage, limit=longTP1, stop=longSL) strategy.exit("TP2/SL", from_entry="Long", limit=longTP2, stop=longSL) if not_in_trade and shortCondition strategy.entry("Short", strategy.short) strategy.exit("TP1/SL", from_entry="Short", qty_percent=tp1_persentage, limit=shortTP1, stop=shortSL) strategy.exit("TP2/SL", from_entry="Short", limit=shortTP2, stop=shortSL)