This strategy combines the Voss Predictive Filter and Ehlers Instantaneous Trendline indicator to identify cyclical turning points in the market for quantitative trading. The Voss filter provides early buy/sell signals, while the trendline indicator determines the overall trend direction to avoid misleads from the Voss filter in trending markets. This strategy works well on instruments like Bitcoin that exhibit cyclical patterns, as evidenced by good backtest results.
The Voss filter comes from John F. Ehlers’ article “A Peek Into The Future”. Its calculation is as follows:
_filt = 0.5 * _s3 * _x1 + _f1 * _s2 * _filt[1] - _s1 * _filt[2]
_voss = _x2 * _filt - _sumC
Where _x1 is the 1st order price difference; _x2 is a smoothing factor; _s1, _s2, _s3 are filter parameters; _f1 is the cycle parameter; _filt is the filter output; _voss is the final output.
The filter can be seen as a smoothed filter that emphasizes current and past cycle information to generate early signals. Due to inherent group delays, it “looks into the future” to produce predictive signals ahead of other indicators.
The trendline indicator is calculated as:
_it = (_a-((_a*_a)/4.0))*_src+0.5*_a*_a*_src[1]-(_a-0.75*_a*_a)*_src[2]+2*(1-_a)*nz(_it[1])+-(1-_a)*(1-_a)*nz(_it[2])
It plots a trendline in real-time that closely fits the price action, accurately determining trend direction and strength.
A buy signal is generated when the Voss crosses up through the filter result.
A sell signal is generated when the Voss crosses down through the filter result.
Trading signals are only accepted if confirmed by the trendline indicator. This avoids wrong signals from the Voss filter in trending markets.
Risks can be reduced by:
The strategy can be improved by:
This strategy combines the Voss filter and trend indicator to effectively identify cyclical turns in the market. With optimized parameters and risk controls, it can produce a robust quantitative trading system. It is widely applicable to instruments exhibiting cyclical patterns, as evidenced by good backtest results. Overall, the strategy has unique predictive capabilities, and broad potential for enhancement through multi-dimensional optimization.
/*backtest start: 2023-08-19 00:00:00 end: 2023-09-18 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // A Peek Into the Future // John F. Ehlers // TASC Aug 2019 // Created by e2e4mfck for tradingview.com // Modified by © Bitduke //@version=4 //strategy("Voss Strategy (Filter + IT)", overlay=false, calc_on_every_tick=false,pyramiding=0, default_qty_type=strategy.cash,default_qty_value=1000, currency=currency.USD, initial_capital=1000,commission_type=strategy.commission.percent, commission_value=0.075) // voss filter source = input(close, type = input.source) period = input(20, type = input.integer) predict = input(4, type = input.integer) bandwidth = input(0.25, type = input.float) // it trendline src = input(hl2, title="Source IT") a = input(0.07, title="Alpha", step=0.01) fr = input(false, title="Fill Trend Region") ebc = input(false, title="Enable barcolors") hr = input(false, title="Hide Ribbon") voss_filter (_period, _predict, _bandwidth, _source) => float _filt = 0, float _sumC = 0, float _voss = 0 _PI = 2 * asin(1) _order = 3 * _predict _f1 = cos(2 * _PI / _period) _g1 = cos(_bandwidth * 2 * _PI / _period) _s1 = 1 / _g1 - sqrt(1 / (_g1 * _g1) - 1) _s2 = 1 + _s1 _s3 = 1 - _s1 _x1 = _source - _source[2] _x2 = (3 + _order) / 2 for _i = 0 to (_order - 1) _sumC := _sumC + ((_i + 1) / _order) * _voss[_order - _i] if bar_index <= _order _filt := 0 _voss := 0 else _filt := 0.5 * _s3 * _x1 + _f1 * _s2 * _filt[1] - _s1 * _filt[2] _voss := _x2 * _filt - _sumC [_voss, _filt] [Voss, Filt] = voss_filter(period, predict, bandwidth, source) instantaneous_trendline (_src, _a, _freq, _ebc, _hr) => _it = 0.0 _it := (_a-((_a*_a)/4.0))*_src+0.5*_a*_a*_src[1]-(_a-0.75*_a*_a)*_src[2]+2*(1-_a )*nz(_it[1], ((_src+2*_src[1]+_src[2])/4.0))-(1-_a)*(1-_a)*nz(_it[2], ((_src+2*_src[1]+_src[2])/4.0)) _lag = 2.0*_it-nz(_it[2]) [_it, _lag] [it, lag] = instantaneous_trendline(src, a, fr, ebc, hr) // - - - - - - - - - - // plot(Filt, title = "Filter", style = plot.style_line, color = color.red, linewidth = 2) plot(Voss, title = "Voss", style = plot.style_line, color = color.blue, linewidth = 2) hline(0.0, title = "Zero", linestyle = hline.style_dashed, color = color.black, linewidth = 1) plot(hr? na:it, title="IT Trend", color= fr? color.gray : color.red, linewidth=1) plot(hr? na:lag, title="IT Trigger", color=fr? color.gray : color.blue, linewidth=1) // Strategy Logic longCondition = lag < it and crossover(Voss,Filt) shortCondition = it > lag and crossover(Filt,Voss) strategy.entry("Voss_Short", strategy.short, when=shortCondition) strategy.entry("Voss_Long", strategy.long, when=longCondition) // === Backtesting Dates === thanks to Trost testPeriodSwitch = input(true, "Custom Backtesting Dates") testStartYear = input(2019, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testStartHour = input(0, "Backtest Start Hour") testPeriodStart = timestamp(testStartYear, testStartMonth, testStartDay, testStartHour, 0) testStopYear = input(2020, "Backtest Stop Year") testStopMonth = input(2, "Backtest Stop Month") testStopDay = input(29, "Backtest Stop Day") testStopHour = input(0, "Backtest Stop Hour") testPeriodStop = timestamp(testStopYear, testStopMonth, testStopDay, testStopHour, 0) testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false testPeriod_1 = testPeriod() isPeriod = true // === /END if not isPeriod strategy.cancel_all() strategy.close_all()