This strategy uses adaptive Bollinger Bands to design two types of trailing stop strategies and backtest them systematically across timeframes. It belongs to trend following strategies.
Calculate the upper and lower bands of adaptive Bollinger Bands, with adjustable channel width.
Breakout tracking strategy to open positions on band breakouts and stop out when price reverts inside bands.
Reversion reversal strategy to open positions when price reaches bands and stop out when price reverts back inside bands.
Use CCI indicator to assist in determining long/short side.
Backtest across multiple timeframes to verify viability of both strategies.
Bollinger Bands are intuitive in capturing price trends.
The two strategies fit different market conditions for robustness.
CCI helps determine long/short direction.
Multi-timeframe backtesting makes results more convincing.
Simple and clear strategy rules easy to implement.
Bollinger Bands can fail in certain situations.
Risks of premature or delayed stops in both strategies.
CCI may generate incorrect signals.
Handle backtest biases carefully.
Optimization risks overfitting.
Test parameters to find optimal combinations.
Evaluate adding filters with other indicators.
Optimize stops to reduce risks.
Research adaptive methods for channel width.
Verify with more symbols and timeframes.
Use machine learning to dynamically optimize parameters.
This strategy designs two trailing stop strategies based on Bollinger Bands and backtests them across multiple timeframes. Refining via parameter optimization, stop improvements etc can enhance robustness into a mature trend following system.
/*backtest start: 2022-09-13 00:00:00 end: 2023-09-19 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy(title = "Underworld Hunter", overlay=true) len = input(75, minval=1, title="Length") src = input(close, title="Source") basis = 0.0 basis := na(basis[1]) ? sma(src, len) : ema(ema(ema(src,len),len),len) mult = input(1.9, minval=0.001, maxval=50, title="Deviation") dev = mult * stdev(src, len) upper = basis + dev lower = basis - dev //CCI calculation and inputs lengthcci = input(20, minval=1, title="Period for CCI") ma = sma(close, lengthcci) ccivalue = (src - ma) / (0.015 * dev(src, lengthcci)) //CCI plotting cciover0 = ccivalue >= 100 and ccivalue <= 120 cciover1 = ccivalue > 120 and ccivalue <= 140 cciover2 = ccivalue > 140 and ccivalue <= 160 cciover3 = ccivalue > 160 and ccivalue <= 180 cciover4 = ccivalue > 180 cciunder0 = ccivalue <= -100 and ccivalue >= -120 cciunder1 = ccivalue <= -120 and ccivalue > -140 cciunder2 = ccivalue <= -140 and ccivalue > -160 cciunder3 = ccivalue <= -160 and ccivalue > -180 cciunder4 = ccivalue <= -180 plotshape(cciover0, title="CCIO0", location=location.abovebar, color=#c6ff1a, transp=0, style=shape.circle, size=size.tiny) plotshape(cciunder0, title="CCIU0", location=location.belowbar, color=#c6ff1a, transp=0, style=shape.circle, size=size.tiny) plotshape(cciover1, title="CCIO1", location=location.abovebar, color=#ffff00, transp=0,style=shape.circle, size=size.tiny) plotshape(cciunder1, title="CCIU1", location=location.belowbar, color=#ffff00, transp=0, style=shape.circle, size=size.tiny) plotshape(cciover2, title="CCIO2", location=location.abovebar, color=#ff9900, transp=0, style=shape.circle, size=size.tiny) plotshape(cciunder2, title="CCIU2", location=location.belowbar, color=#ff9900, transp=0, style=shape.circle, size=size.tiny) plotshape(cciover3, title="CCIO3", location=location.abovebar, color=#ff0000, transp=0, style=shape.circle, size=size.tiny) plotshape(cciunder3, title="CCIU3", location=location.belowbar, color=#ff0000, transp=0, style=shape.circle, size=size.tiny) plotshape(cciover4, title="CCIO4", location=location.abovebar, color=#cc00cc, transp=0,style=shape.circle, size=size.tiny) plotshape(cciunder4, title="CCIU4", location=location.belowbar, color=#cc00cc, transp=0,style=shape.circle, size=size.tiny) //plotting plot(upper, title="Upper shadow", color=color.black, transp = 30, linewidth = 4) plot(upper, title="Upper line", color=#FF2E00, transp = 0, linewidth = 2) plot(lower, title="Lower shadow", color=color.black, transp = 30, linewidth = 4) plot(lower, title="Lower line", color=#FF2E00, transp = 0, linewidth = 2) plot(basis, title="Basic line", color=color.red, transp = 50, linewidth = 2) mean = input(title="Test Reverse to the Mean instead", type=input.bool, defval=false) test = input(title="Enable testing", type=input.bool, defval=true) ordersize=floor(50000/close) if(close>upper and strategy.opentrades==0 and not mean and test) strategy.entry("Hunt Up", strategy.long, ordersize) if (close<upper and close[1]<upper and close[2]<upper) strategy.close("Hunt Up", qty_percent = 100, comment = "Hunt End") if(close<lower and strategy.opentrades==0 and not mean and test) strategy.entry("Hunt Down", strategy.short, ordersize) if (close>lower and close[1]>lower and close[2]>lower) strategy.close("Hunt Down", qty_percent = 100, comment = "Hunt End") //bounce of bands if(close>upper and strategy.opentrades==0 and mean and test) strategy.entry("Sneak Down", strategy.short, ordersize) if (close<upper and close[1]<upper and close[2]<upper and close>high[1]) strategy.close("Sneak Down", qty_percent = 100, comment = "SneakEnd") if(close<lower and strategy.opentrades==0 and mean and test) strategy.entry("Sneak Up", strategy.long, ordersize) if (close>lower and close[1]>lower and close[2]>lower and close<low[1]) strategy.close("Sneak Up", qty_percent = 100, comment = "Sneak End")