This strategy generates trading signals by selecting fast and slow trend indicators and going long when the fast trend crosses over the slow trend, and going short when the fast trend crosses below the slow trend. The strategy incorporates over 20 different trend calculations to choose from.
The core of the strategy is the selection and combination of fast and slow trend indicators:
FastTrend = User selected fast trend indicator
SlowTrend = User selected slow trend indicator
Fast trend includes SMA, EMA, KAMA and 20+ trend algorithms. Slow trend can also be freely selected.
Trading signals are generated by judging the relationship between fast and slow trends:
if FastTrend > SlowTrend:
Go long
if FastTrend < SlowTrend:
Close position
Long signal is triggered when fast trend crosses over slow trend. Short signal is triggered when fast trend crosses below slow trend.
The strategy can be improved in the following aspects:
Adjust fast/slow trends and parameters to find optimal combinations.
Add filters like volume to avoid false signals during market choppiness.
Incorporate stop loss strategies like trailing stop loss to control single trade loss.
Combine with other indicators like MACD, KDJ to improve stability.
Optimize entry timing, don’t just rely on trend crossover.
The multi trend crossover strategy identifies trend changes across timeframes by combining fast and slow trends. But it is sensitive to market fluctuations and only works well in obvious trending markets. We need methods like parameter optimization and risk management to improve strategy stability and profitability.
[/trans]
/*backtest start: 2023-08-21 00:00:00 end: 2023-09-20 00:00:00 period: 3h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // @version=5 // Author = TradeAutomation strategy(title="Multi Trend Cross Strategy Template", shorttitle="Multi Trend Cross Strategy", process_orders_on_close=true, overlay=true, commission_type=strategy.commission.cash_per_contract, commission_value=0.0035, initial_capital = 1000000, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // Backtest Date Range Inputs // StartTime = input(defval=timestamp('01 Jan 2000 05:00 +0000'), group="Date Range", title='Start Time') EndTime = input(defval=timestamp('01 Jan 2099 00:00 +0000'), group="Date Range", title='End Time') InDateRange = true // Trend Selector // TrendSelectorInput = input.string(title="Fast Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your fast trend") TrendSelectorInput2 = input.string(title="Slow Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your slow trend") src = input.source(close, "Price Source", group="Core Settings", tooltip="This is the price source being used for the trends to calculate based on") length = input.int(10, "Fast Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend") length2 = input.int(200, "Slow Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend") LineWidth = input.int(1, "Line Width", group="Core Settings", tooltip="This is the width of the line plotted that represents the selected trend") // Individual Moving Average / Regression Setting // AlmaOffset = input.float(0.85, "ALMA Offset", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected") AlmaSigma = input.float(6, "ALMA Sigma", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected") ATRFactor = input.float(3, "ATR Multiplier For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected") ATRLength = input.int(12, "ATR Length For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected") ssfLength = input.int(20, "DSMA Super Smoother Filter Length", minval=1, tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings") ssfPoles = input.int(2, "DSMA Super Smoother Filter Poles", options=[2, 3], tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings") JMApower = input.int(2, "JMA Power Parameter", group="Individual Trend Settings", tooltip="This only applies when JMA is selected") phase = input.int(-45, title="JMA Phase Parameter", step=10, minval=-110, maxval=110, group="Individual Trend Settings", tooltip="This only applies when JMA is selected") KamaAlpha = input.float(3, "KAMA's Alpha", minval=1,step=0.5, group="Individual Trend Settings", tooltip="This only applies when KAMA is selected") LinRegOffset = input.int(0, "Linear Regression Offset", group="Individual Trend Settings", tooltip="This only applies when Linear Regression is selected") VAMALookback =input.int(12, "VAMA Volatility lookback", group="Individual Trend Settings", tooltip="This only applies when VAMA is selected") // Trend Indicators With Library Functions // ALMA = ta.alma(src, length, AlmaOffset, AlmaSigma) EMA = ta.ema(src, length) HMA = ta.hma(src, length) LinReg = ta.linreg(src, length, LinRegOffset) RMA = ta.rma(src, length) SMA = ta.sma(src, length) VWMA = ta.vwma(src, length) WMA = ta.wma(src, length) ALMA2 = ta.alma(src, length2, AlmaOffset, AlmaSigma) EMA2 = ta.ema(src, length2) HMA2 = ta.hma(src, length2) LinReg2 = ta.linreg(src, length2, LinRegOffset) RMA2 = ta.rma(src, length2) SMA2 = ta.sma(src, length2) VWMA2 = ta.vwma(src, length2) WMA2 = ta.wma(src, length2) // Additional Trend Indicators Built In And/Or Open Sourced // //DEMA de1 = ta.ema(src, length) de2 = ta.ema(de1, length) DEMA = 2 * de1 - de2 de3 = ta.ema(src, length2) de4 = ta.ema(de3, length2) DEMA2 = 2 * de3 - de4 // Ehlers Deviation-Scaled Moving Average - DSMA [Everget] PI = 2 * math.asin(1) get2PoleSSF(src, length) => arg = math.sqrt(2) * PI / length a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(arg) c2 = b1 c3 = -math.pow(a1, 2) c1 = 1 - c2 - c3 var ssf = 0.0 ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2]) get3PoleSSF(src, length) => arg = PI / length a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(1.738 * arg) c1 = math.pow(a1, 2) coef2 = b1 + c1 coef3 = -(c1 + b1 * c1) coef4 = math.pow(c1, 2) coef1 = 1 - coef2 - coef3 - coef4 var ssf = 0.0 ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3]) zeros = src - nz(src[2]) avgZeros = (zeros + zeros[1]) / 2 // Ehlers Super Smoother Filter ssf = ssfPoles == 2 ? get2PoleSSF(avgZeros, ssfLength) : get3PoleSSF(avgZeros, ssfLength) // Rescale filter in terms of Standard Deviations stdev = ta.stdev(ssf, length) scaledFilter = stdev != 0 ? ssf / stdev : 0 alpha1 = 5 * math.abs(scaledFilter) / length EDSMA = 0.0 EDSMA := alpha1 * src + (1 - alpha1) * nz(EDSMA[1]) get2PoleSSF2(src, length2) => arg = math.sqrt(2) * PI / length2 a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(arg) c2 = b1 c3 = -math.pow(a1, 2) c1 = 1 - c2 - c3 var ssf2 = 0.0 ssf2 := c1 * src + c2 * nz(ssf2[1]) + c3 * nz(ssf2[2]) get3PoleSSF2(src, length2) => arg = PI / length2 a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(1.738 * arg) c1 = math.pow(a1, 2) coef2 = b1 + c1 coef3 = -(c1 + b1 * c1) coef4 = math.pow(c1, 2) coef1 = 1 - coef2 - coef3 - coef4 var ssf2 = 0.0 ssf2 := coef1 * src + coef2 * nz(ssf2[1]) + coef3 * nz(ssf2[2]) + coef4 * nz(ssf2[3]) // Ehlers Super Smoother Filter ssf2 = ssfPoles == 2 ? get2PoleSSF2(avgZeros, ssfLength) : get3PoleSSF2(avgZeros, ssfLength) // Rescale filter in terms of Standard Deviations stdev2 = ta.stdev(ssf2, length2) scaledFilter2 = stdev2 != 0 ? ssf2 / stdev2 : 0 alpha12 = 5 * math.abs(scaledFilter2) / length2 EDSMA2 = 0.0 EDSMA2 := alpha12 * src + (1 - alpha12) * nz(EDSMA2[1]) //JMA [Everget] phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5 beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2) alpha = math.pow(beta, JMApower) var JMA = 0.0 var e0 = 0.0 e0 := (1 - alpha) * src + alpha * nz(e0[1]) var e1 = 0.0 e1 := (src - e0) * (1 - beta) + beta * nz(e1[1]) var e2 = 0.0 e2 := (e0 + phaseRatio * e1 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(e2[1]) JMA := e2 + nz(JMA[1]) beta2 = 0.45 * (length2 - 1) / (0.45 * (length2 - 1) + 2) alpha2 = math.pow(beta2, JMApower) var JMA2 = 0.0 var e02 = 0.0 e02 := (1 - alpha2) * src + alpha2 * nz(e02[1]) var e12 = 0.0 e12 := (src - e02) * (1 - beta2) + beta2 * nz(e12[1]) var e22 = 0.0 e22 := (e02 + phaseRatio * e12 - nz(JMA2[1])) * math.pow(1 - alpha2, 2) + math.pow(alpha2, 2) * nz(e22[1]) JMA2 := e22 + nz(JMA2[1]) //KAMA [Everget] var KAMA = 0.0 fastAlpha = 2.0 / (KamaAlpha + 1) slowAlpha = 2.0 / 31 momentum = math.abs(ta.change(src, length)) volatility = math.sum(math.abs(ta.change(src)), length) efficiencyRatio = volatility != 0 ? momentum / volatility : 0 smoothingConstant = math.pow((efficiencyRatio * (fastAlpha - slowAlpha)) + slowAlpha, 2) KAMA := nz(KAMA[1], src) + smoothingConstant * (src - nz(KAMA[1], src)) var KAMA2 = 0.0 momentum2 = math.abs(ta.change(src, length2)) volatility2 = math.sum(math.abs(ta.change(src)), length2) efficiencyRatio2 = volatility2 != 0 ? momentum2 / volatility2 : 0 smoothingConstant2 = math.pow((efficiencyRatio2 * (fastAlpha - slowAlpha)) + slowAlpha, 2) KAMA2 := nz(KAMA2[1], src) + smoothingConstant2 * (src - nz(KAMA2[1], src)) //SMMA var SMMA = 0.0 SMMA := na(SMMA[1]) ? ta.sma(src, length) : (SMMA[1] * (length - 1) + src) / length var SMMA2 = 0.0 SMMA2 := na(SMMA2[1]) ? ta.sma(src, length2) : (SMMA2[1] * (length2 - 1) + src) / length2 //TEMA t1 = ta.ema(src, length) t2 = ta.ema(t1, length) t3 = ta.ema(t2, length) TEMA = 3 * (t1 - t2) + t3 t12 = ta.ema(src, length2) t22 = ta.ema(t12, length2) t32 = ta.ema(t22, length2) TEMA2 = 3 * (t12 - t22) + t32 //TMA TMA = ta.sma(ta.sma(src, math.ceil(length / 2)), math.floor(length / 2) + 1) TMA2 = ta.sma(ta.sma(src, math.ceil(length2 / 2)), math.floor(length2 / 2) + 1) //VAMA [Duyck] mid=ta.ema(src,length) dev=src-mid vol_up=ta.highest(dev,VAMALookback) vol_down=ta.lowest(dev,VAMALookback) VAMA = mid+math.avg(vol_up,vol_down) mid2=ta.ema(src,length2) dev2=src-mid2 vol_up2=ta.highest(dev2,VAMALookback) vol_down2=ta.lowest(dev2,VAMALookback) VAMA2 = mid2+math.avg(vol_up2,vol_down2) //VIDYA [KivancOzbilgic] var VIDYA=0.0 VMAalpha=2/(length+1) ud1=src>src[1] ? src-src[1] : 0 dd1=src<src[1] ? src[1]-src : 0 UD=math.sum(ud1,9) DD=math.sum(dd1,9) CMO=nz((UD-DD)/(UD+DD)) VIDYA := na(VIDYA[1]) ? ta.sma(src, length) : nz(VMAalpha*math.abs(CMO)*src)+(1-VMAalpha*math.abs(CMO))*nz(VIDYA[1]) var VIDYA2=0.0 VMAalpha2=2/(length2+1) ud12=src>src[1] ? src-src[1] : 0 dd12=src<src[1] ? src[1]-src : 0 UD2=math.sum(ud12,9) DD2=math.sum(dd12,9) CMO2=nz((UD2-DD2)/(UD2+DD2)) VIDYA2 := na(VIDYA2[1]) ? ta.sma(src, length2) : nz(VMAalpha2*math.abs(CMO2)*src)+(1-VMAalpha2*math.abs(CMO2))*nz(VIDYA2[1]) //VMA [LazyBear] sc = 1/length pdm = math.max((src - src[1]), 0) mdm = math.max((src[1] - src), 0) var pdmS = 0.0 var mdmS = 0.0 pdmS := ((1 - sc)*nz(pdmS[1]) + sc*pdm) mdmS := ((1 - sc)*nz(mdmS[1]) + sc*mdm) s = pdmS + mdmS pdi = pdmS/s mdi = mdmS/s var pdiS = 0.0 var mdiS = 0.0 pdiS := ((1 - sc)*nz(pdiS[1]) + sc*pdi) mdiS := ((1 - sc)*nz(mdiS[1]) + sc*mdi) d = math.abs(pdiS - mdiS) s1 = pdiS + mdiS var iS = 0.0 iS := ((1 - sc)*nz(iS[1]) + sc*d/s1) hhv = ta.highest(iS, length) llv = ta.lowest(iS, length) d1 = hhv - llv vi = (iS - llv)/d1 var VMA=0.0 VMA := na(VMA[1]) ? ta.sma(src, length) : sc*vi*src + (1 - sc*vi)*nz(VMA[1]) sc2 = 1/length2 pdm2 = math.max((src - src[1]), 0) mdm2 = math.max((src[1] - src), 0) var pdmS2 = 0.0 var mdmS2 = 0.0 pdmS2 := ((1 - sc2)*nz(pdmS2[1]) + sc2*pdm2) mdmS2 := ((1 - sc2)*nz(mdmS2[1]) + sc2*mdm2) s2 = pdmS2 + mdmS2 pdi2 = pdmS2/s2 mdi2 = mdmS2/s2 var pdiS2 = 0.0 var mdiS2 = 0.0 pdiS2 := ((1 - sc2)*nz(pdiS2[1]) + sc2*pdi2) mdiS2 := ((1 - sc2)*nz(mdiS2[1]) + sc2*mdi2) d2 = math.abs(pdiS2 - mdiS2) s12 = pdiS2 + mdiS2 var iS2 = 0.0 iS2 := ((1 - sc2)*nz(iS2[1]) + sc2*d2/s12) hhv2 = ta.highest(iS2, length) llv2 = ta.lowest(iS2, length) d12 = hhv2 - llv2 vi2 = (iS2 - llv2)/d12 var VMA2=0.0 VMA2 := na(VMA2[1]) ? ta.sma(src, length2) : sc2*vi2*src + (1 - sc2*vi2)*nz(VMA2[1]) //WWMA var WWMA=0.0 WWMA := (1/length)*src + (1-(1/length))*nz(WWMA[1]) var WWMA2=0.0 WWMA2 := (1/length2)*src + (1-(1/length2))*nz(WWMA2[1]) //Zero Lag EMA [KivancOzbilgic] EMA1a = ta.ema(src,length) EMA2a = ta.ema(EMA1a,length) Diff = EMA1a - EMA2a ZLEMA = EMA1a + Diff EMA12 = ta.ema(src,length2) EMA22 = ta.ema(EMA12,length2) Diff2 = EMA12 - EMA22 ZLEMA2 = EMA12 + Diff2 // Trend Mapping and Plotting // FastTrend = TrendSelectorInput == "ALMA" ? ALMA : TrendSelectorInput == "DEMA" ? DEMA : TrendSelectorInput == "DSMA" ? EDSMA : TrendSelectorInput == "EMA" ? EMA : TrendSelectorInput == "HMA" ? HMA : TrendSelectorInput == "JMA" ? JMA : TrendSelectorInput == "KAMA" ? KAMA : TrendSelectorInput == "Linear Regression (LSMA)" ? LinReg : TrendSelectorInput == "RMA" ? RMA : TrendSelectorInput == "SMA" ? SMA : TrendSelectorInput == "SMMA" ? SMMA : TrendSelectorInput == "Price Source" ? src : TrendSelectorInput == "TEMA" ? TEMA : TrendSelectorInput == "TMA" ? TMA : TrendSelectorInput == "VAMA" ? VAMA : TrendSelectorInput == "VIDYA" ? VIDYA : TrendSelectorInput == "VMA" ? VMA : TrendSelectorInput == "VWMA" ? VWMA : TrendSelectorInput == "WMA" ? WMA : TrendSelectorInput == "WWMA" ? WWMA : TrendSelectorInput == "ZLEMA" ? ZLEMA : SMA SlowTrend = TrendSelectorInput2 == "ALMA" ? ALMA2 : TrendSelectorInput2 == "DEMA" ? DEMA2 : TrendSelectorInput2 == "DSMA" ? EDSMA2 : TrendSelectorInput2 == "EMA" ? EMA2 : TrendSelectorInput2 == "HMA" ? HMA2 : TrendSelectorInput2 == "JMA" ? JMA2 : TrendSelectorInput2 == "KAMA" ? KAMA2 : TrendSelectorInput2 == "Linear Regression (LSMA)" ? LinReg2 : TrendSelectorInput2 == "RMA" ? RMA2 : TrendSelectorInput2 == "SMA" ? SMA2 : TrendSelectorInput2 == "SMMA" ? SMMA2 : TrendSelectorInput2 == "Price Source" ? src : TrendSelectorInput2 == "TEMA" ? TEMA2 : TrendSelectorInput2 == "TMA" ? TMA2 : TrendSelectorInput2 == "VAMA" ? VAMA2 : TrendSelectorInput2 == "VIDYA" ? VIDYA2 : TrendSelectorInput2 == "VMA" ? VMA2 : TrendSelectorInput2 == "VWMA" ? VWMA2 : TrendSelectorInput2 == "WMA" ? WMA2 : TrendSelectorInput2 == "WWMA" ? WWMA2 : TrendSelectorInput2 == "ZLEMA" ? ZLEMA2 : SMA2 plot(FastTrend, color=color.green, linewidth=LineWidth) plot(SlowTrend, color=color.red, linewidth=LineWidth) //Short & Long Options Long = input.bool(true, "Model Long Trades", group="Core Settings") Short = input.bool(false, "Model Short Trades", group="Core Settings") // Entry & Exit Functions // if (InDateRange and Long==true and FastTrend>SlowTrend) strategy.entry("Long", strategy.long, alert_message="Long") if (InDateRange and Long==true and FastTrend<SlowTrend) strategy.close("Long", alert_message="Close Long") if (InDateRange and Short==true and FastTrend<SlowTrend) strategy.entry("Short", strategy.short, alert_message="Short") if (InDateRange and Short==true and FastTrend>SlowTrend) strategy.close("Short", alert_message="Cover Short") if (not InDateRange) strategy.close_all(alert_message="End of Date Range")