This strategy uses cross-period technical indicators to identify trend direction, combined with trend filtering and volatility filtering, to achieve low-risk trend tracking trading.
Use high-low point breakthroughs to determine buy and sell signals. Go short when the price breaks through the 7-period high, and go long when it breaks through the 7-period low.
The Trendflex indicator determines the main trend direction. This indicator combines double smoothing techniques and can effectively identify trend middle sections. A value above 1 indicates an upward trend, while a value below -1 indicates a downward trend. Here we require Trendflex > 1 for longs and < -1 for shorts, thereby filtering out consolidation states.
Use Bollinger Bands to identify oscillation ranges. Avoid longs and shorts when the close price is within the band.
Use moving stop loss and take profit to manage positions.
Cross-period indicators combined with double smoothing techniques can effectively identify trend directions and avoid oscillating markets.
Considering both trend direction and volatility patterns makes trading signals more reliable.
Reasonable stop loss and take profit settings lock in profits and prevent losses from expanding.
The strategy is relatively simple and easy to implement.
Breakthrough signals may have false breakouts, resulting in wrong trades. More filtering conditions can be considered.
Fixed cycle parameters cannot adapt to market changes. Dynamic optimization of parameters can be considered.
Lack of price stops fails to prevent huge losses from extreme market conditions.
Fixed take profit and stop loss points cannot be adjusted intelligently according to market volatility.
Consider adding more trend judgment indicators to form a strategy combination to improve judgment accuracy.
Add oscillation identification modules to pause trading when oscillation is severe to reduce risk.
Introduce machine learning algorithms to achieve dynamic parameter optimization.
Add price stop loss modules to stop loss when losses reach a certain threshold.
Calculate take profit and stop loss ratios based on market volatility to achieve intelligent adjustment of take profit and stop loss.
Overall, this strategy is relatively stable and reliable, while also having room for improvement. The core idea is to determine the trend direction across cycles, and then filter using trend strength indicators and volatility indicators to generate high-quality signals. This simple and practical strategy is very suitable for tracking medium and long term trends. By introducing more conditional judgments and dynamic parameter optimization, the strategy effect can be further improved.
/*backtest start: 2023-08-27 00:00:00 end: 2023-09-26 00:00:00 period: 4h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy("Eltrut", shorttitle="Eltrut Strat", overlay=true, pyramiding=0, default_qty_type= strategy.percent_of_equity,calc_on_order_fills=false, slippage=25,commission_type=strategy.commission.percent,commission_value=0.075) testStartYear = input(2016, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) testStopYear = input(2030, "Backtest Stop Year") testStopMonth = input(12, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) // R E F L E X / T R E N D F L E X f_supersmoother(_src,_len)=> pi = 2 * asin(1) _a = exp(-sqrt(2) * pi / _len) _c2 = 2 * _a * cos(sqrt(2) * pi / _len) _c3 = -_a * _a _c1 = 1 - _c2 - _c3 _out = 0.0 _out := _c1 * _src + _c2 * nz(_out[1],nz(_src[1],_src)) + _c3 * nz(_out[2],nz(_src[2],nz(_src[1],_src))) f_IQIFM(_src1,_max)=> _src = _src1 < 0.001 ? _src1 * 10000 : _src1 _imult = 0.635, _qmult = 0.338 , _inphase = 0.0, _quad = 0.0 _re = 0.0, _im = 0.0, _deltaphase = 0.0, _instper = 0.0, _per = 0.0, _v4 = 0.0 _v1 = _src - nz(_src[7]) _inphase := 1.25 * (nz(_v1[4]) - _imult * _v1[2]) + _imult * nz(_inphase[3]) _quad := _v1[2] - _qmult * _v1 + _qmult * nz(_quad[2]) _re := 0.2 * (_inphase * _inphase[1] + _quad * _quad[1]) + 0.8 * nz(_re[1]) _im := 0.2 * (_inphase * _quad[1] - _inphase[1] * _quad) + 0.8 * nz(_im[1]) if _re != 0.0 _deltaphase := atan(_im / _re) for i = 0 to _max _v4 := _v4 + _deltaphase[i] if _v4 > 4 * asin(1) and _instper == 0.0 _instper := i if _instper == 0.0 _instper := nz(_instper[1]) _per := 0.25 * _instper + 0.75 * nz(_per[1]) _per f_flex(_src1, _fixed_len, _reflex) => _src = _src1 _len = _fixed_len _ss1 = f_supersmoother(_src, _len) _ss = _ss1 _slope = (_ss[_len] - _ss) / _len _sum = 0.0 for _i = 1 to _len _c1 = _reflex ? _ss + _i * _slope - _ss[_i] : _ss - _ss[_i] _sum := _sum + _c1 _sum := _sum / _len _ms = 0.0 _ms := 0.04 * pow(_sum,2) + 0.96 * nz(_ms[1]) _flex1 = _ms != 0 ? _sum / sqrt(nz(_ms)) : 0.0 _flex = _flex1 _flex rflx = f_flex(close, 20, true) trndflx = f_flex(close, 20, false) // S I G N A L hi7 = highest(7) lo7 = lowest(7) long_cond = crossunder(close, lo7[1]) short_cond = crossover(close, hi7[1]) // F I L T E R S long_filter1 = trndflx < 1 short_filter1 = trndflx > -1 basis = sma(close, 35) dev = 3 * stdev(close, 35) long_filter2 = close > basis - dev short_filter2 = close < basis + dev // S T R A T E G Y long = long_cond and long_filter1 and long_filter2 short = short_cond and short_filter1 and short_filter2 if( true) strategy.entry("Long", strategy.long, when = long) strategy.entry("Long", strategy.long, when = short) // User Options to Change Inputs (%) stopPer = input(3, title='Stop Loss %', type=input.float) / 100 takePer = input(9, title='Take Profit %', type=input.float) / 100 // Determine where you've entered and in what direction longStop = strategy.position_avg_price * (1 - stopPer) shortStop = strategy.position_avg_price * (1 + stopPer) shortTake = strategy.position_avg_price * (1 - takePer) longTake = strategy.position_avg_price * (1 + takePer) if strategy.position_size > 0 strategy.exit(id="Exit Long", stop=longStop, limit=longTake) if strategy.position_size < 0 strategy.exit(id="Exit Short", stop=shortStop, limit=shortTake) // P L O T plotshape(long, color = #1e90ff, text = "", style=shape.triangleup, location=location.belowbar, size=size.tiny) plotshape(short, color = #ff69b4, text = "", style=shape.triangledown, location=location.abovebar, size=size.tiny) alertcondition(long, "Long", "Enter Long") alertcondition(short, "Short", "Enter S")