This strategy combines multiple technical indicators to achieve clear trend tracking. The main components are:
By synthesizing signals from these indicators, the strategy can identify trends more precisely. It will go long when golden cross happens and go short when dead cross appears.
Firstly, moving averages and their envelopes are used to determine the trend direction. Price breaking through the envelope may signal potential trend reversal.
Secondly, KD lines from the stochastic oscillator are used to detect oversold/overbought conditions, which usually imply opportunities for reversal.
Then, price-volume indicators are constructed to analyze the funds flow. Rising volume represents capital inflow and trend continuation, while falling volume indicates capital outflow and trend reversal.
To quantify trend quality, a volatility index is built from average price range, and its EMA measures the strength of the trend. This helps filter out fake trends.
Finally, divergences between price and RSI may also indicate upcoming trend reversals.
By combining all these signals, the trend can be identified more precisely. The strategy will go long when golden cross between MAs appears, and go short when dead cross happens.
Risk management:
This strategy can be improved in the following aspects:
Use machine learning to auto-tune parameters for different products
Add model evaluation to dynamically adjust indicator weights based on market conditions
Implement adaptive stop loss based on market volatility
Incorporate deep learning for more accurate trend prediction
Build auto signal reconciliation to resolve conflicts and reduce false signals
Integrate more indicators for ensemble system prediction
Explore parameterless indicators to reduce parameter dependence
This strategy leverages multiple technical indicators to achieve relatively robust trend identification, with promising application potential. However, its accuracy and risk management need continuous improvements before stable live trading. Future optimizations may incorporate machine learning and other techniques to enable intelligent automation.
/*backtest start: 2022-09-21 00:00:00 end: 2023-09-27 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 //Market Cipher Update 2 - updated 8th Oct 2019 //Momentum Curves with green and red dots strategy(title="MarketCipher B", shorttitle="MarketCipher B") n1 = input(9, "Channel Length") n2 = input(12, "Average Length") obLevel1 = input(60, "Over Bought Level 1") obLevel2 = input(53, "Over Bought Level 2") osLevel1 = input(-60, "Over Sold Level 1") osLevel2 = input(-53, "Over Sold Level 2") osLevel3 = input(-100, "Over Sold Level 2") ap = hlc3 esa = ema(ap, n1) d = ema(abs(ap - esa), n1) ci = (ap - esa) / (0.015 * d) tci = ema(ci, n2) wt1 = tci wt2 = sma(wt1,3) plot(0, color=gray, title="Zero Line") plot(obLevel1, color=red, style=3, title="Bottom") plot(osLevel1, color=green, style=3, title="Top") plot(wt1, color=#BFE4FF, style=4, title= "Lt Blue Wave") plot(wt2, color=#673ab7, style=4, title="Blue Wave", transp=40) plot(wt1-wt2, color=yellow, style=4, transp=40, title="wave1-wave2") //green dots and crosses plotshape(crossover(wt1, wt2) and osLevel1 ? wt2 : na, title="Pos Crossover", location=location.absolute, style=shape.cross, size=size.tiny, color=#3FFF00, transp=20) plotshape(crossover(wt2, wt1) and osLevel1 ? wt1 : na, title="Neg Crossover", location=location.absolute, style=shape.cross, size=size.tiny, color=red, transp=20) plotshape(crossover(wt1, wt2) and wt2 < -59 ? wt2 : na, title="Pos Crossover", location=location.bottom, style=shape.circle, size=size.tiny, color=#3FFF00, transp=20) plotshape(crossover(wt2, wt1) and wt1 > 59 ? wt2 : na, title="Neg Crossover", location=location.top, style=shape.circle, size=size.tiny, color=red, transp=20) buy= crossover(wt1,wt2) // Define our buy/sell conditions, using pine inbuilt functions. sell= crossover(wt2,wt1) ordersize=floor(strategy.equity/close) // To dynamically calculate the order size as the account equity increases or decreases. strategy.entry("long",strategy.long,ordersize,when=buy) // Buys when buy condition met strategy.close("long", when = sell ) // Closes position when sell condition met strategy.entry("short",strategy.short,ordersize,when=sell) strategy.close("short",when = buy ) //soch RSI with divergences smoothKw = input(3, minval=1) smoothDw = input(3, minval=1) lengthRSIw = input(14, minval=1) lengthStochw = input(14, minval=1) uselogw = input(true, title="Log") srcInw = input(close, title="Source") showdivsw = input(true, title="Show Divergences") showhiddenw = input(false, title="Show Hidden Divergences") showchanw = input(false, title="Show Divergences Channel") srcw = uselogw ? log(srcInw) : srcInw rsi1w = rsi(srcw, lengthRSIw) kkw = sma(stoch(rsi1w, rsi1w, rsi1w, lengthStochw), smoothKw) dw = sma(kkw, smoothDw) hmw = input(false, title="Use Average of both K & D") kw = hmw ? avg(kkw, dw) : kkw aw = plot(kkw, color=blue, linewidth=1, transp=0, title="K") bw = plot(dw, color=orange, linewidth=1, transp=0, title="D") fw = kkw >= dw ? blue : orange fill(aw, bw, title="KD Fill", color=white) //------------------------------ //@RicardoSantos' Divergence Script f_top_fractal(_src)=>_src[4] < _src[2] and _src[3] < _src[2] and _src[2] > _src[1] and _src[2] > _src[0] f_bot_fractal(_src)=>_src[4] > _src[2] and _src[3] > _src[2] and _src[2] < _src[1] and _src[2] < _src[0] f_fractalize(_src)=>f_top_fractal(_src) ? 1 : f_bot_fractal(_src) ? -1 : 0 //------------------------- fractal_top = f_fractalize(kw) > 0 ? kw[2] : na fractal_bot = f_fractalize(kw) < 0 ? kw[2] : na high_prev = valuewhen(fractal_top, kw[2], 0)[2] high_price = valuewhen(fractal_top, high[2], 0)[2] low_prev = valuewhen(fractal_bot, kw[2], 0)[2] low_price = valuewhen(fractal_bot, low[2], 0)[2] regular_bearish_diva = fractal_top and high[2] > high_price and kw[2] < high_prev hidden_bearish_diva = fractal_top and high[2] < high_price and kw[2] > high_prev regular_bullish_diva = fractal_bot and low[2] < low_price and kw[2] > low_prev hidden_bullish_diva = fractal_bot and low[2] > low_price and kw[2] < low_prev //------------------------- plot(showchanw?fractal_top:na, title="Top Div Channel", offset=-2, color=gray) plot(showchanw?fractal_bot:na, title="Bottom Div Channel", offset=-2, color=gray) col1 = regular_bearish_diva ? red : hidden_bearish_diva and showhiddenw ? red : na col2 = regular_bullish_diva ? green : hidden_bullish_diva and showhiddenw ? green : na col3 = regular_bearish_diva ? red : hidden_bearish_diva and showhiddenw ? red : showchanw ? gray : na col4 = regular_bullish_diva ? green : hidden_bullish_diva and showhiddenw ? green : showchanw ? gray : na plot(title='H F', series=showdivsw and fractal_top ? kw[2] : na, color=col1, linewidth=2, offset=-2) plot(title='L F', series=showdivsw and fractal_bot ? kw[2] : na, color=col2, linewidth=2, offset=-2) plot(title='H D', series=showdivsw and fractal_top ? kw[2] : na, style=circles, color=col3, linewidth=3, offset=-2) plot(title='L D', series=showdivsw and fractal_bot ? kw[2] : na, style=circles, color=col4, linewidth=3, offset=-2) plotshape(title='+RBD', series=showdivsw and regular_bearish_diva ? kw[2] : na, text='R', style=shape.labeldown, location=location.absolute, color=red, textcolor=white, offset=-2) plotshape(title='+HBD', series=showdivsw and hidden_bearish_diva and showhiddenw ? kw[2] : na, text='H', style=shape.labeldown, location=location.absolute, color=red, textcolor=white, offset=-2) plotshape(title='-RBD', series=showdivsw and regular_bullish_diva ? kw[2] : na, text='R', style=shape.labelup, location=location.absolute, color=green, textcolor=white, offset=-2) plotshape(title='-HBD', series=showdivsw and hidden_bullish_diva and showhiddenw ? kw[2] : na, text='H', style=shape.labelup, location=location.absolute, color=green, textcolor=white, offset=-2) //money flow colorRed = #ff0000 colorGreen = #03ff00 ma(matype, src, length) => if matype == "RMA" rma(src, length) else if matype == "SMA" sma(src, length) else if matype == "EMA" ema(src, length) else if matype == "WMA" wma(src, length) else if matype == "VWMA" vwma(src, length) else src rsiMFIperiod = input(60, "RSI+MFI Period") rsiMFIMultiplier = input(190, "RSI+MFI Area multiplier") MFRSIMA = input(defval="SMA", title="MFRSIMA", options=["RMA", "SMA", "EMA", "WMA", "VWMA"]) candleValue = (close - open) / (high - low) MVC = ma(MFRSIMA, candleValue, rsiMFIperiod) color_area = MVC > 0 ? green : red RSIMFIplot = plot(MVC * rsiMFIMultiplier, title="RSI+MFI Area", color=color_area, transp=35) fill(RSIMFIplot, plot(0), color_area, transp=50) //rsi //Bullish Divergence (green triangle) //Hidden Bullish Divergence (green circle) //Bearish Divergence (red triangle) //Hidden Bearish Divergence (red circle) lend = 14 bearish_div_rsi = input(60, "Min Bearish RSI", minval=50, maxval=100) bullish_div_rsi = input(40, "Max Bullish RSI", minval=0, maxval=50) // RSI code rsi = rsi(close, lend) plot(rsi, color=#6DFFE1, linewidth=2, transp=0, title="RSI") // DIVS code xbars = 60 hb = abs(highestbars(rsi, xbars)) // Finds bar with highest value in last X bars lb = abs(lowestbars(rsi, xbars)) // Finds bar with lowest value in last X bars // Defining variable values, mandatory in Pine 3 max = na max_rsi = na min = na min_rsi = na bearish_div = na bullish_div = na hidden_bearish_div = na hidden_bullish_div = na div_alert = na hidden_div_alert = na // If bar with lowest / highest is current bar, use it's value max := hb == 0 ? close : na(max[1]) ? close : max[1] max_rsi := hb == 0 ? rsi : na(max_rsi[1]) ? rsi : max_rsi[1] min := lb == 0 ? close : na(min[1]) ? close : min[1] min_rsi := lb == 0 ? rsi : na(min_rsi[1]) ? rsi : min_rsi[1] // Compare high of current bar being examined with previous bar's high // If curr bar high is higher than the max bar high in the lookback window range if close > max // we have a new high max := close // change variable "max" to use current bar's high value if rsi > max_rsi // we have a new high max_rsi := rsi // change variable "max_rsi" to use current bar's RSI value if close < min // we have a new low min := close // change variable "min" to use current bar's low value if rsi < min_rsi // we have a new low min_rsi := rsi // change variable "min_rsi" to use current bar's RSI value // Detects divergences between price and indicator with 1 candle delay so it filters out repeating divergences if (max[1] > max[2]) and (rsi[1] < max_rsi) and (rsi <= rsi[1]) and (rsi[1] >= bearish_div_rsi) bearish_div := true div_alert := true if (min[1] < min[2]) and (rsi[1] > min_rsi) and (rsi >= rsi[1]) and (rsi[1] <= bullish_div_rsi) bullish_div := true div_alert := true // Hidden divergences if (max[1] < max[2]) and (rsi[1] < max_rsi) hidden_bearish_div := true hidden_div_alert := true if (min[1] > min[2]) and (rsi[1] > min_rsi) hidden_bullish_div := true hidden_div_alert := true // Alerts alertcondition(div_alert, title='RSI Divergence', message='RSI Divergence') alertcondition(hidden_div_alert, title='Hidden RSI Divergence', message='Hidden RSI Divergence') // Plots divergences with offest plotshape((bearish_div ? rsi[1] + 3 : na), location=location.absolute, style=shape.diamond, color=#ff0000, size=size.tiny, transp=0, offset=0, title="RSI Bear Div") plotshape((bullish_div ? rsi[1] - 3 : na), location=location.absolute, style=shape.diamond, color=#00ff01, size=size.tiny, transp=0, offset=0, title="RSI Bull Div") plotshape((hidden_bearish_div ? rsi[1] + 3 : na), location=location.absolute, style=shape.circle, color=#ff0000, size=size.tiny, transp=0, offset=0, title="RSI Bear hDiv") plotshape((hidden_bullish_div ? rsi[1] - 3 : na), location=location.absolute, style=shape.circle, color=#00ff01, size=size.tiny, transp=0, offset=0, title="RSI Bull hDiv") //wave divergences WTCross = cross(wt1, wt2) WTCrossUp = wt2 - wt1 <= 0 WTCrossDown = wt2 - wt1 >= 0 WTFractal_top = f_fractalize(wt1) > 0 and wt1[2] ? wt1[2] : na WTFractal_bot = f_fractalize(wt1) < 0 and wt1[2] ? wt1[2] : na WTHigh_prev = valuewhen(WTFractal_top, wt1[2], 0)[2] WTHigh_price = valuewhen(WTFractal_top, high[2], 0)[2] WTLow_prev = valuewhen(WTFractal_bot, wt1, 0)[2] WTLow_price = valuewhen(WTFractal_bot, low[2], 0)[2] WTRegular_bearish_div = WTFractal_top and high[2] > WTHigh_price and wt1[2] < WTHigh_prev WTRegular_bullish_div = WTFractal_bot and low[2] < WTLow_price and wt1[2] > WTLow_prev bearWTSignal = WTRegular_bearish_div and WTCrossDown bullWTSignal = WTRegular_bullish_div and WTCrossUp WTCol1 = bearWTSignal ? #ff0000 : na WTCol2 = bullWTSignal ? #00FF00EB : na plot(series = WTFractal_top ? wt1[2] : na, title='Bearish Divergence', color=WTCol1, linewidth=5, transp=60) plot(series = WTFractal_bot ? wt1[2] : na, title='Bullish Divergence', color=WTCol2, linewidth=5, transp=60) //2nd wave WTFractal_topa = f_fractalize(wt2) > 0 and wt2[2] ? wt2[2] : na WTFractal_bota = f_fractalize(wt2) < 0 and wt2[2] ? wt2[2] : na WTHigh_preva = valuewhen(WTFractal_topa, wt2[2], 0)[2] WTHigh_pricea = valuewhen(WTFractal_topa, high[2], 0)[2] WTLow_preva = valuewhen(WTFractal_bota, wt2, 0)[2] WTLow_pricea = valuewhen(WTFractal_bota, low[2], 0)[2] WTRegular_bearish_diva = WTFractal_topa and high[2] > WTHigh_pricea and wt2[2] < WTHigh_preva WTRegular_bullish_diva = WTFractal_bota and low[2] < WTLow_pricea and wt2[2] > WTLow_preva bearWTSignala = WTRegular_bearish_diva and WTCrossDown bullWTSignala = WTRegular_bullish_diva and WTCrossUp WTCol1a = bearWTSignala ? #ff0000 : na WTCol2a = bullWTSignala ? #00FF00EB : na plot(series = WTFractal_topa ? wt2[2] : na, title='Bearish Divergence', color=WTCol1a, linewidth=5, transp=60) plot(series = WTFractal_bota ? wt2[2] : na, title='Bullish Divergence', color=WTCol2a, linewidth=5, transp=60)