This strategy adopts a level breakthrough approach to go long or short under certain breakthrough conditions, and has auto-backtesting capabilities to find the optimal parameter combination.
Input parameters include lookback days, take profit percentage, stop loss percentage, and auto-backtesting parameters like lookback range, take profit/stop loss range etc.
During backtesting, traverse various combinations of lookback, take profit and stop loss, and record PnL for each combination.
Breakthrough signal logic: long when close breaks above upper band and not the entry bar, short when close breaks below lower band and not the entry bar.
Stop loss condition: if not take profited and stop loss is triggered, exit the trade.
Take profit condition: if not stopped out and take profit is triggered, exit the trade.
Display detailed backtest results table, sortable by win rate, net profit or number of trades based on user settings.
Auto backtest can quickly find optimal parameter sets without manual testing.
Sort backtest results flexibly by win rate, net profit, number of trades etc according to needs.
Visualize PnL for each trade.
Customizable backtest parameters for testing wider parameter space to find global optimum.
Simple and clear trading rules easy to understand and implement.
Short backtest period may lead to unstable results. Solution: use longer backtest period.
Frequent trading prone to slippage affecting profitability. Solution: relax take profit/stop loss levels appropriately.
Single instrument backtest may not be representative. Solution: test on different products to find robust parameter sets.
Over-optimized parameters cause overfitting. Solution: test stability of parameters across products and timeframes.
Ignoring transaction costs lead to bias in results. Solution: use reasonable commission settings.
Increase optimization dimensions like adding trailing stop or trade limits.
Optimize entry conditions with trend filters.
Enhance take profit/stop loss like dynamic take profit or trailing stop loss.
Introduce machine learning for parameter optimization.
Optimize code structure for faster backtesting.
Test parameter robustness across products and timeframes.
Consider integrating auto trading capabilities.
The strategy has clear and simple logic, auto backtesting enables quick parameter tuning, PnL display facilitates further improvements. Risks exist but can be reduced through multi-dimensional optimizations, with strong practical value. In summary, this strategy equipped with auto backtesting tools can help traders quickly develop stable trading systems based on simple breakout concepts.
/*backtest start: 2023-09-16 00:00:00 end: 2023-10-16 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // © -_- //@version=5 // strategy("[-_-] LBAB", process_orders_on_close=true, overlay=true, max_labels_count=500, max_lines_count=500, max_boxes_count=500, default_qty_type=strategy.cash, default_qty_value=100, initial_capital=10000, commission_type=strategy.commission.percent, commission_value=0.075) // Inputs lookback = input.int(2, title="Lookback", minval=2, maxval=15) tp = input.float(5, title="TP (%)", minval=1, maxval=10000) sl = input.float(5, title="SL (% from Low)", minval=1, maxval=100) com = input.float(0.075, title="Commission (%)", minval=0, maxval=50) min_lookback_tr = input.float(2, title="Min Lookback", minval=1, maxval=500, inline="tr_lookback", group="Optimisation") max_lookback_tr = input.float(5, title="Max Lookback", minval=1, maxval=500, inline="tr_lookback", group="Optimisation") min_tp_tr = input.float(5, title="Min TP (%)", minval=1, maxval=10000, inline="tr_tp", group="Optimisation") max_tp_tr = input.float(10, title="Max TP (%)", minval=1, maxval=10000, inline="tr_tp", group="Optimisation") min_sl_tr = input.float(1, title="Min SL (%)", minval=1, maxval=100, inline="tr_sl", group="Optimisation") max_sl_tr = input.float(5, title="Max SL (%)", minval=1, maxval=100, inline="tr_sl", group="Optimisation") imp_perc_profit = input.bool(true, title="Percentage profitable", group="Optimisation") imp_netprofit = input.bool(false, title="Net profit", group="Optimisation") imp_numtrades = input.bool(false, title="Number of trades", group="Optimisation") table_pos = input.string("Bottom Right", title="Position", options=["Top Left", "Top Center", "Top Right", "Middle Left", "Middle Center", "Middle Right", "Bottom Left", "Bottom Center", "Bottom Right"], group="Table") table_font_size = input.string("Normal", title="Font size", options=["Auto", "Tiny", "Small", "Normal", "Large"], group="Table") // Table parameters table_pos_ = switch table_pos "Top Left" => position.top_left "Top Center" => position.top_center "Top Right" => position.top_right "Middle Left" => position.middle_left "Middle Center" => position.middle_center "Middle Right" => position.middle_right "Bottom Left" => position.bottom_left "Bottom Center" => position.bottom_center "Bottom Right" => position.bottom_right table_font_size_ = switch table_font_size "Auto" => size.auto "Tiny" => size.tiny "Small" => size.small "Normal" => size.normal "Large" => size.large // Sorting function (first element will be largest) sortArr(arr, arr_index) => n = array.size(arr) - 1 for i = 0 to n - 1 for j = 0 to n - i - 1 if array.get(arr, j) < array.get(arr, j + 1) temp = array.get(arr, j) temp_index = array.get(arr_index, j) array.set(arr, j, array.get(arr, j + 1)) array.set(arr, j + 1, temp) array.set(arr_index, j, array.get(arr_index, j + 1)) array.set(arr_index, j + 1, temp_index) // Safe checks if min_lookback_tr > max_lookback_tr runtime.error("Min Lookback must be less than Max Lookback") if min_tp_tr > max_tp_tr runtime.error("Min Take Profit must be less than Max Take Profit") if min_sl_tr > max_sl_tr runtime.error("Min Stop Loss must be less than Max Stop Loss") // tp_min_ = int(min_tp_tr / 1) tp_max_ = int(max_tp_tr / 1) sl_min_ = int(min_sl_tr / 1) sl_max_ = int(max_sl_tr / 1) // Size for arrays arr_size = int((max_lookback_tr - min_lookback_tr + 1) * (tp_max_ - tp_min_ + 1) * (sl_max_ - sl_min_ + 1)) // Arrays var arr_bi = array.new_int(arr_size, na) // bar_index of Smash Day var arr_in_pos = array.new_bool(arr_size, false) // are we in a position? var arr_params = array.new_string(arr_size, "") var arr_wonlost = array.new_string(arr_size, "") var arr_profit = array.new_float(arr_size, 0) // Testing what parameters are best index = 0 // Lookback for lookback_i = min_lookback_tr to max_lookback_tr // Take profit for tp_i = tp_min_ to tp_max_ // Stop loss for sl_i = sl_min_ to sl_max_ // Parameters of current iteration lookback_ = lookback_i tp_ = tp_i sl_ = sl_i // if array.get(arr_params, index) == "" array.set(arr_params, index, str.tostring(lookback_) + " " + str.tostring(tp_) + " " + str.tostring(sl_)) // Was there an entry? was_edone = false // If entry price reached if not array.get(arr_in_pos, index) and not na(array.get(arr_bi, index)) if high >= high[bar_index - array.get(arr_bi, index)] and bar_index != array.get(arr_bi, index) array.set(arr_in_pos, index, true) was_edone := true // If we're in a position if array.get(arr_in_pos, index) and bar_index != array.get(arr_bi, index) and not was_edone low_sl = low[bar_index - array.get(arr_bi, index)] * (1 - sl_ / 100) high_ep = high[bar_index - array.get(arr_bi, index)] high_tp = high_ep * (1 + tp_ / 100) amount = 100 // Stop loss if low <= low_sl array.set(arr_in_pos, index, false) array.set(arr_wonlost, index, array.get(arr_wonlost, index) + "0") array.set(arr_profit, index, array.get(arr_profit, index) - math.abs(amount / high_ep * low_sl - amount) - com / 100 * amount * 2) array.set(arr_bi, index, na) // Take profit if high >= high_tp array.set(arr_in_pos, index, false) array.set(arr_wonlost, index, array.get(arr_wonlost, index) + "1") array.set(arr_profit, index, array.get(arr_profit, index) + math.abs(amount / high_ep * high_tp - amount) - com / 100 * amount * 2) array.set(arr_bi, index, na) // Entry condition cond = barstate.isconfirmed and close < low[1] and high[1] < high[lookback_ + 1] //and not array.get(arr_in_pos, index) // New entry price if cond and not array.get(arr_in_pos, index) array.set(arr_bi, index, bar_index) // Update index index := index + 1 // Checking the results var table t = na var result_index = array.new_int(0, na) var result_arr_winrate = array.new_float(0, na) var result_arr_tradenum = array.new_int(0, na) var sort_array = array.new_float(0, na) if (barstate.islast or barstate.islastconfirmedhistory) and na(t) for i = 0 to array.size(arr_params) - 1 wins = 0 losses = 0 arr = array.get(arr_wonlost, i) for j = 0 to str.length(arr) - 1 str_ = str.substring(arr, j, j + 1) if str_ == "0" losses := losses + 1 if str_ == "1" wins := wins + 1 // Push percentage profitable trades perc_profit = math.round(wins / (wins + losses) * 100, 2) array.push(result_arr_winrate, perc_profit) // Push number of trades trade_num = str.length(array.get(arr_wonlost, i)) array.push(result_arr_tradenum, trade_num) // Push index array.push(result_index, i) // For combined sorting array.push(sort_array, (imp_netprofit ? array.get(arr_profit, i) : 1) * (imp_perc_profit ? perc_profit : 1) * (imp_numtrades ? trade_num : 1)) // Sort sortArr(array.copy(sort_array), result_index) t := table.new(columns=6, rows=13, bgcolor=color.white, border_color=color.new(color.blue, 0), border_width=1, frame_color=color.new(color.blue, 0), frame_width=1, position=table_pos_) table.cell(t, 0, 0, "% Profitable" + (imp_perc_profit ? " ↓" : ""), bgcolor=imp_perc_profit ? color.rgb(23, 18, 25) : color.white, text_color=imp_perc_profit ? color.white : color.black, text_size=table_font_size_) table.cell(t, 1, 0, "Net Profit" + (imp_netprofit ? " ↓" : ""), bgcolor=imp_netprofit ? color.rgb(23, 18, 25) : color.white, text_color=imp_netprofit ? color.white : color.black, text_size=table_font_size_) table.cell(t, 2, 0, "# of trades" + (imp_numtrades ? " ↓" : ""), bgcolor=imp_numtrades ? color.rgb(23, 18, 25) : color.white, text_color=imp_numtrades ? color.white : color.black, text_size=table_font_size_) table.cell(t, 3, 0, "Lookback", text_size=table_font_size_) table.cell(t, 4, 0, "Take Profit %", text_size=table_font_size_) table.cell(t, 5, 0, "Stop Loss %", text_size=table_font_size_) counter = 0 forloop_counter = math.min(array.size(result_index) - 1, 10) for i = 0 to forloop_counter i_ = array.get(result_index, i) params_ = str.split(array.get(arr_params, i_), " ") col_ = color.new(color.blue, 75) table.cell(t, 0, i + 1, str.tostring(array.get(result_arr_winrate, i_)) + "%", bgcolor=col_, text_size=table_font_size_) table.cell(t, 1, i + 1, str.tostring(math.round(array.get(arr_profit, i_), 2)) + "$", bgcolor=col_, text_size=table_font_size_) table.cell(t, 2, i + 1, str.tostring(array.get(result_arr_tradenum, i_)), bgcolor=col_, text_size=table_font_size_) table.cell(t, 3, i + 1, array.get(params_, 0), bgcolor=col_, text_size=table_font_size_) table.cell(t, 4, i + 1, array.get(params_, 1), bgcolor=col_, text_size=table_font_size_) table.cell(t, 5, i + 1, array.get(params_, 2), bgcolor=col_, text_size=table_font_size_) counter := counter + 1 // Warn if timeframe is <= 10 minutes if timeframe.in_seconds(timeframe.period) <= 600 table.cell(t, 0, forloop_counter + 2, "Timeframe might be too low", bgcolor=color.orange, text_size=table_font_size_, tooltip="Selected timeframe might be too low and cause an error") table.merge_cells(t, 0, forloop_counter + 2, 5, forloop_counter + 2) // Strategy var int bi = na var int pos_bi = na // Buy condition cond = barstate.isconfirmed and close < low[1] and high[1] < high[lookback + 1] and strategy.position_size == 0 // Stop loss, Take profit if strategy.position_size[1] == 0 and strategy.position_size > 0 and bar_index != bi strategy.exit("TP/SL", "Long", stop=low[bar_index - bi] * (1 - sl / 100), limit=high[bar_index - bi] * (1 + tp / 100)) pos_bi := bar_index // Buy if cond strategy.order("Long", strategy.long, stop=high) bi := bar_index // Box if strategy.position_size[1] != 0 and strategy.position_size == 0 tn = strategy.closedtrades - 1 penp = strategy.closedtrades.entry_price(tn) pexp = strategy.closedtrades.exit_price(tn)