This strategy mainly combines Bollinger Bands and RSI indicators to judge trading signals, which is a typical frankenstein strategy. It integrates the advantages of different indicators by judging the trend direction through Bollinger Bands and detecting overbought and oversold situations through RSI to make entries and stop-loss exits.
Use the middle band, upper band and lower band of Bollinger Bands to judge the current price trend. When the price breaks through the upper band, it is considered a bullish trend. When it breaks through the lower band, it is considered a bearish trend.
The width of Bollinger Bands (difference between upper and lower bands) can reflect the current market volatility. When the width increases, it means volatility increases and RSI can better detect overbought and oversold situations.
The RSI indicator judges overbought and oversold situations. Above 70 is the overbought zone and below 30 is the oversold zone. Avoid entering in overbought and oversold zones to obtain better risk-reward ratios.
Specific trading signals: (1) Bullish signal: Price breaks through the upper band and RSI is not overbought (RSI less than 70) (2) Bearish signal: Price breaks through the lower band and RSI is not oversold (RSI greater than 30)
Stop loss: For long trades, stop loss when RSI breaks below 70. For short trades, stop loss when RSI breaks above 30.
The advantages of this strategy are:
Integrating multiple indicators provides more comprehensive information and reliable signals.
Using Bollinger Bands to determine the overall trend catches the big moves.
The RSI indicator further avoids unnecessary risks by detecting local overbought and oversold levels.
The stop loss mechanism is quite strict, which helps reduce losses.
This strategy also has the following risks:
Both Bollinger Bands and RSI may fail, resulting in wrong trading signals.
Although having a stop loss, improper stop loss points can still lead to major losses.
Too frequent trading increases transaction costs and slippage.
Improper optimization of parameters may lead to overfitting.
This strategy can be optimized in the following aspects:
Test different parameter combinations to find the optimal parameters.
Increase flexibility of stop loss methods, such as ADDR/ATR stop loss, trailing stop loss etc.
Add position sizing strategies, such as fixed fraction, Martingale etc.
Incorporate more indicators to filter signals, such as volume etc.
Use machine learning for adaptive parameter optimization.
Optimize entry timing, wait for confirmation signals before entering.
In summary, this is a typical frankenstein strategy combining multiple indicators. It integrates the advantages of Bollinger Bands and RSI to catch trends while avoiding overbought and oversold risks. With proper parameter optimization and stop loss management, good results can be achieved. But it also has some risks and needs further optimization to improve stability. Overall, the strategy idea is reasonable and has great room for improvement.
/*backtest start: 2023-09-24 00:00:00 end: 2023-10-24 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © evillalobos1123 //@version=5 strategy("Villa Dinamic Pivot Supertrend Strategy", overlay=true, calc_on_every_tick = true, default_qty_type = strategy.fixed) //INPUTS ema_b = input.bool(false, "Use Simple EMA Filter", group = "Strategy Inputs") ema_b_ang = input.bool(true, "Use DEMA Angle Filter", group = "Strategy Inputs") dema_b = input.bool(true, "Use DEMA Filter", group = "Strategy Inputs") st_sig = input.bool(false, "Take Every Supertrend Signal" , group = "Strategy Inputs") take_p = input.bool(true, "Stop Loss at Supertrend", group = "Strategy Inputs") din_tp = input.bool(false, "2 Steps Take Profit", group = "Strategy Inputs") move_sl = input.bool(true, "Move SL", group = "Strategy Inputs") sl_atr = input.float(2.5, "Stop Loss ATR Multiplier", group = "Strategy Inputs") tp_atr = input.float(4, "Take Profit ATR Multiplier", group = "Strategy Inputs") din_tp_qty = input.int(50, "2 Steps TP qty%", group = "Strategy Inputs") dema_a_filter = input.float(0, "DEMA Angle Threshold (+ & -)", group = "Strategy Inputs") dema_a_look = input.int(1, "DEMA Angle Lookback", group = "Strategy Inputs") dr_test = input.string("Backtest", "Testing", options = ["Backtest", "Forwardtest", "All"], group = "Strategy Inputs") not_in_trade = strategy.position_size == 0 //Backtesting date range start_year = input.int(2021, "Backtesting start year", group = "BT Date Range") start_month = input.int(1, "Backtesting start month", group = "BT Date Range") start_date = input.int(1, "Backtesting start day", group = "BT Date Range") end_year = input.int(2021, "Backtesting end year", group = "BT Date Range") end_month = input.int(12, "Backtesting end month", group = "BT Date Range") end_date = input.int(31, "Backtesting end day", group = "BT Date Range") bt_date_range = (time >= timestamp(syminfo.timezone, start_year, start_month, start_date, 0, 0)) and (time < timestamp(syminfo.timezone, end_year, end_month, end_date, 0, 0)) //Forward testing date range start_year_f = input.int(2022, "Forwardtesting start year", group = "FT Date Range") start_month_f = input.int(1, "Forwardtesting start month", group = "FT Date Range") start_date_f = input.int(1, "Forwardtesting start day", group = "FT Date Range") end_year_f = input.int(2022, "Forwardtesting end year", group = "FT Date Range") end_month_f = input.int(03, "Forwardtesting end month", group = "FT Date Range") end_date_f = input.int(26, "Forwardtesting end day", group = "FT Date Range") ft_date_range = (time >= timestamp(syminfo.timezone, start_year_f, start_month_f, start_date_f, 0, 0)) and (time < timestamp(syminfo.timezone, end_year_f, end_month_f, end_date_f, 0, 0)) //date condition date_range_cond = if dr_test == "Backtest" bt_date_range else if dr_test == "Forwardtest" ft_date_range else true //INDICATORS //PIVOT SUPERTREND prd = input.int(2, "PVT ST Pivot Point Period", group = "Pivot Supertrend") Factor=input.float(3, "PVT ST ATR Factor", group = "Pivot Supertrend") Pd=input.int(9 , "PVT ST ATR Period", group = "Pivot Supertrend") // get Pivot High/Low float ph = ta.pivothigh(prd, prd) float pl = ta.pivotlow(prd, prd) // calculate the Center line using pivot points var float center = na float lastpp = ph ? ph : pl ? pl : na if lastpp if na(center) center := lastpp else //weighted calculation center := (center * 2 + lastpp) / 3 // upper/lower bands calculation Up = center - (Factor * ta.atr(Pd)) Dn = center + (Factor * ta.atr(Pd)) // get the trend float TUp = na float TDown = na Trend = 0 TUp := close[1] > TUp[1] ? math.max(Up, TUp[1]) : Up TDown := close[1] < TDown[1] ? math.min(Dn, TDown[1]) : Dn Trend := close > TDown[1] ? 1: close < TUp[1]? -1: nz(Trend[1], 1) Trailingsl = Trend == 1 ? TUp : TDown // check and plot the signals bsignal = Trend == 1 and Trend[1] == -1 ssignal = Trend == -1 and Trend[1] == 1 //get S/R levels using Pivot Points float resistance = na float support = na support := pl ? pl : support[1] resistance := ph ? ph : resistance[1] //DEMA dema_ln = input.int(200, "DEMA Len", group = 'D-EMAs') dema_src = input.source(close, "D-EMAs Source", group = 'D-EMAs') ema_fd = ta.ema(dema_src, dema_ln) dema = (2*ema_fd)-(ta.ema(ema_fd,dema_ln)) //EMA ema1_l = input.int(21, "EMA 1 Len", group = 'D-EMAs') ema2_l = input.int(50, "EMA 2 Len", group = 'D-EMAs') ema3_l = input.int(200, "EMA 3 Len", group = 'D-EMAs') ema1 = ta.ema(dema_src, ema1_l) ema2 = ta.ema(dema_src, ema2_l) ema3 = ta.ema(dema_src, ema3_l) //Supertrend Periods = input.int(21, "ST ATR Period", group = "Normal Supertrend") src_st = input.source(hl2, "ST Supertrend Source", group = "Normal Supertrend") Multiplier = input.float(2.0 , "ST ATR Multiplier", group = "Normal Supertrend") changeATR= true atr2 = ta.sma(ta.tr, Periods) atr3= changeATR ? ta.atr(Periods) : atr2 up=src_st-(Multiplier*atr3) up1 = nz(up[1],up) up := close[1] > up1 ? math.max(up,up1) : up dn=src_st+(Multiplier*atr3) dn1 = nz(dn[1], dn) dn := close[1] < dn1 ? math.min(dn, dn1) : dn trend = 1 trend := nz(trend[1], trend) trend := trend == -1 and close > dn1 ? 1 : trend == 1 and close < up1 ? -1 : trend buySignal = trend == 1 and trend[1] == -1 sellSignal = trend == -1 and trend[1] == 1 //ATR atr = ta.atr(14) ///CONDITIONS //BUY /// ema simple ema_cond_b = if ema_b ema1 > ema2 and ema2 > ema3 else true ///ema angle dema_angle_rad = math.atan((dema - dema[dema_a_look])/0.0001) dema_angle = dema_angle_rad * (180/math.pi) dema_ang_cond_b = if ema_b_ang if dema_angle >= dema_a_filter true else false else true ///ema distance dema_cond_b = if dema_b close > dema else true //supertrends ///if pivot buy sig or (st buy sig and pivot. trend = 1) pvt_cond_b = bsignal st_cond_b = if st_sig buySignal and Trend == 1 else false st_entry_cond = pvt_cond_b or st_cond_b ///stop loss tp sl_b = if take_p if trend == 1 up else close - (atr * sl_atr) else close - (atr * sl_atr) tp_b = if take_p if trend == 1 close + ((close - up) * (tp_atr / sl_atr)) else close + (atr * tp_atr) else close + (atr * tp_atr) //position size init_cap = strategy.equity pos_size_b = math.round((init_cap * .01) / (close - sl_b)) ent_price = strategy.opentrades.entry_price(strategy.opentrades - 1) var sl_b_n = 0.0 var tp_b_n = 0.0 longCondition = (ema_cond_b and dema_cond_b and dema_ang_cond_b and st_entry_cond and date_range_cond and not_in_trade) if (longCondition) strategy.entry("Long", strategy.long, qty = pos_size_b) sl_b_n := sl_b tp_b_n := tp_b ent_price := strategy.opentrades.entry_price(strategy.opentrades - 1) if (up[1] < ent_price and up >= ent_price and trend[0] == 1) if din_tp strategy.close("Long", qty_percent = din_tp_qty) if move_sl sl_b_n := ent_price strategy.exit("Exit", "Long", stop =sl_b_n, limit = tp_b_n) //sell ///ema simple ema_cond_s = if ema_b ema1 < ema2 and ema2 < ema3 else true //ema distance dema_cond_s = if dema_b close < dema else true //dema angle dema_ang_cond_s = if ema_b_ang if dema_angle <= (dema_a_filter * -1) true else false else true //supertrends ///if pivot buy sig or (st buy sig and pivot. trend = 1) pvt_cond_s = ssignal st_cond_s = if st_sig sellSignal and Trend == -1 else false st_entry_cond_s = pvt_cond_s or st_cond_s ///stop loss tp sl_s = if take_p if trend == -1 dn else close + (atr * sl_atr) else close + (atr * sl_atr) tp_s = if take_p if trend == -1 close - ((dn - close) * (tp_atr / sl_atr)) else close - (atr * tp_atr) else close - (atr * tp_atr) shortCondition = (ema_cond_s and dema_cond_s and dema_ang_cond_s and st_entry_cond_s and not_in_trade) pos_size_s = math.round((init_cap * .01) / (sl_s - close)) var sl_s_n = 0.0 var tp_s_n = 0.0 if (shortCondition) strategy.entry("Short", strategy.short, qty = pos_size_s) sl_s_n := sl_s tp_s_n := tp_s if (dn[1] > ent_price and dn <= ent_price and trend[0] == -1) if din_tp strategy.close("Short", qty_percent = din_tp_qty) if move_sl sl_s_n := ent_price strategy.exit("Exit", "Short", stop = sl_s_n, limit = tp_s_n)