资源加载中... loading...

PMax Breakout Strategy Based on RSI and T3 Indicators

Author: ChaoZhang, Date: 2023-11-22 15:03:08
Tags:

img

Overview

This is a quantitative trading strategy that utilizes RSI and T3 indicators to determine trends and sets stop-loss lines based on ATR indicators to implement adaptive PMax breakouts. Its main idea is to optimize trend determination and stop-loss settings to control risks while improving profitability.

Strategy Logic

  1. Determine trends using RSI and T3 indicators

    • Use RSI indicator to judge overbought/oversold of stocks
    • Calculate T3 indicator based on RSI to determine trends
  2. Set adaptive PMax stop-loss lines based on ATR indicator

    • Use ATR as a representative of volatility
    • Set stop-loss lines above and below T3 indicator, with width of a multiple of ATR
    • Realize adaptive adjustment of stop-loss lines
  3. Buy on crossover and exit on stop-loss

    • Consider price crossover above T3 as buy signal
    • Exit position when price crosses below stop-loss line

Advantages

The main advantages of this strategy:

  1. RSI + T3 combination improves trend determination
  2. PMax adaptive stop-loss controls risks
  3. ATR as volatility index rationalizes stop-loss width
  4. Balance between drawdown and profitability

Risks

The main risks:

  1. Reversal risk

    Short-term reversals may trigger stop-loss and cause loss. Can loosen stop-loss to reduce impact.

  2. Trend determination failure risk

    RSI+T3’s trend determination not 100% reliable. Wrong judgement may cause loss. Can optimize parameters or add other indicators.

Improvements

Some directions for further optimization:

  1. Add other indicators like moving average for trend assistance
  2. Optimize length parameters for RSI and T3
  3. Test different ATR multipliers for stop-loss width
  4. Adjust stop-loss looseness based on different markets

Conclusion

This strategy integrates the strengths of RSI, T3 and ATR indicators, achieving a combination of trend determination and risk control. Compared to single indicators, it has higher accuracy and drawdown control, making it a reliable trend tracking strategy. Still room for optimizing parameters and risk control. Overall a recommended quantitative trading strategy worth promoting.


/*backtest
start: 2023-11-14 00:00:00
end: 2023-11-21 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © KivancOzbilgic
//developer: @KivancOzbilgic
//author: @KivancOzbilgic

strategy("PMax on Rsi w T3 Strategy","PmR3St.", overlay=false, precision=2)
src = input(hl2, title="Source")
Multiplier = input(title="ATR Multiplier", type=input.float, step=0.1, defval=3)
length =input(8, "Tillson T3 Length", minval=1)
T3a1 = input(0.7, "TILLSON T3 Volume Factor", step=0.1)
Periods = input(10,title="ATR Length", type=input.integer)
rsilength = input(14, minval=1, title="RSI Length")
showrsi = input(title="Show RSI?", type=input.bool, defval=true)
showsupport = input(title="Show Moving Average?", type=input.bool, defval=true)
showsignalsk = input(title="Show Crossing Signals?", type=input.bool, defval=true)
highlighting = input(title="Highlighter On/Off ?", type=input.bool, defval=true)
i = close>=close[1] ? close-close[1] : 0
i2 = close<close[1] ? close[1]-close : 0
Wwma_Func(src,rsilength)=>
    wwalpha = 1/ rsilength
    WWMA = 0.0
    WWMA := wwalpha*src + (1-wwalpha)*nz(WWMA[1])
WWMA=Wwma_Func(src,rsilength)
AvUp = Wwma_Func(i,rsilength)
AvDown = Wwma_Func(i2,rsilength)
AvgUp = sma(i,rsilength)
AvgDown =sma(i2,rsilength)
k1 = high>close[1] ? high-close[1] : 0
k2 = high<close[1] ? close[1]-high : 0
k3 = low>close[1] ? low-close[1] : 0
k4 = low<close[1] ? close[1]-low : 0
AvgUpH=(AvgUp*(rsilength-1)+ k1)/rsilength
AvgDownH=(AvgDown*(rsilength-1)+ k2)/rsilength
AvgUpL=(AvgUp*(rsilength-1)+ k3)/rsilength
AvgDownL=(AvgDown*(rsilength-1)+ k4)/rsilength
rs = AvUp/AvDown
rsi= rs==-1 ? 0 : (100-(100/(1+rs)))
rsh=AvgUpH/AvgDownH
rsih= rsh==-1 ? 0 : (100-(100/(1+rsh)))
rsl=AvgUpL/AvgDownL
rsil= rsl==-1 ? 0 : (100-(100/(1+rsl)))
TR=max(rsih-rsil,abs(rsih-rsi[1]),abs(rsil-rsi[1]))
atr=sma(TR,Periods)
plot(showrsi ? rsi : na, "RSI", color=#8E1599)
band1 = hline(70, "Upper Band", color=#C0C0C0)
band0 = hline(30, "Lower Band", color=#C0C0C0)
fill(band1, band0, color=#9915FF, transp=90, title="Background")
T3e1=ema(rsi, length)
T3e2=ema(T3e1,length)
T3e3=ema(T3e2,length)
T3e4=ema(T3e3,length)
T3e5=ema(T3e4,length)
T3e6=ema(T3e5,length)
T3c1=-T3a1*T3a1*T3a1
T3c2=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c3=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c4=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T3=T3c1*T3e6+T3c2*T3e5+T3c3*T3e4+T3c4*T3e3
MAvg=T3
Pmax_Func(rsi,length)=>
    longStop = MAvg - Multiplier*atr
    longStopPrev = nz(longStop[1], longStop)
    longStop := MAvg > longStopPrev ? max(longStop, longStopPrev) : longStop
    shortStop = MAvg + Multiplier*atr
    shortStopPrev = nz(shortStop[1], shortStop)
    shortStop := MAvg < shortStopPrev ? min(shortStop, shortStopPrev) : shortStop
    dir = 1
    dir := nz(dir[1], dir)
    dir := dir == -1 and MAvg > shortStopPrev ? 1 : dir == 1 and MAvg < longStopPrev ? -1 : dir
    PMax = dir==1 ? longStop: shortStop
PMax=Pmax_Func(rsi,length)
plot(showsupport ? MAvg : na, color=color.black, linewidth=2, title="T3")
pALL=plot(PMax, color=color.red, linewidth=2, title="PMax", transp=0)
alertcondition(cross(MAvg, PMax), title="Cross Alert", message="PMax - Moving Avg Crossing!")
alertcondition(crossover(MAvg, PMax), title="Crossover Alarm", message="Moving Avg BUY SIGNAL!")
alertcondition(crossunder(MAvg, PMax), title="Crossunder Alarm", message="Moving Avg SELL SIGNAL!")
alertcondition(cross(src, PMax), title="Price Cross Alert", message="PMax - Price Crossing!")
alertcondition(crossover(src, PMax), title="Price Crossover Alarm", message="PRICE OVER PMax - BUY SIGNAL!")
alertcondition(crossunder(src, PMax), title="Price Crossunder Alarm", message="PRICE UNDER PMax - SELL SIGNAL!")
buySignalk = crossover(MAvg, PMax)
plotshape(buySignalk and showsignalsk ? PMax*0.995 : na, title="Buy", text="Buy", location=location.absolute, style=shape.labelup, size=size.tiny, color=color.green, textcolor=color.white, transp=0)
sellSignallk = crossunder(MAvg, PMax)
plotshape(sellSignallk and showsignalsk ? PMax*1.005 : na, title="Sell", text="Sell", location=location.absolute, style=shape.labeldown, size=size.tiny, color=color.red, textcolor=color.white, transp=0)
mPlot = plot(rsi, title="", style=plot.style_circles, linewidth=0,display=display.none)
longFillColor = highlighting ? (MAvg>PMax ? color.green : na) : na
shortFillColor = highlighting ? (MAvg<PMax ? color.red : na) : na
fill(mPlot, pALL, title="UpTrend Highligter", color=longFillColor)
fill(mPlot, pALL, title="DownTrend Highligter", color=shortFillColor)

dummy0 = input(true, title = "=Backtest Inputs=")
FromDay    = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
FromMonth  = input(defval = 1, title = "From Month", minval = 1, maxval = 12)
FromYear   = input(defval = 2005, title = "From Year", minval = 2005)
ToDay      = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
ToMonth    = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
ToYear     = input(defval = 9999, title = "To Year", minval = 2006)
Start     = timestamp(FromYear, FromMonth, FromDay, 00, 00)
Finish    = timestamp(ToYear, ToMonth, ToDay, 23, 59)
Timerange() =>
    time >= Start and time <= Finish ? true : false
if buySignalk
    strategy.entry("Long", strategy.long,when=Timerange())
if sellSignallk
    strategy.entry("Short", strategy.short,when=Timerange())


More