The main idea of this strategy is to dynamically track market trends by buying when the trend goes up and selling when the trend goes down. It combines multiple technical indicators to determine the trend direction, such as linear regression, modified Hull Moving Average, etc.
This strategy utilizes various technical indicators to determine the trend direction. First, it calculates a price channel, with the upper and lower limits based on the simple moving average of close and an input parameter. Then, it calculates the modified Hull Moving Average, which is considered better at depicting trends. In addition, the linear regression indicator is also calculated. It generates buy signals when the modified HMA crosses above the linear regression line, and sell signals when crossing below. This allows dynamically tracking changes in the trend.
To reduce false signals, the strategy also incorporates several filters, such as using EMA to determine if it’s in a downtrend, and a windowed indicator to check for RSI divergence. These filters help avoid taking trades during choppy, sideways markets.
For entries and exits, the strategy records the price of the last open position, and sets take profit and stop loss percentages. For example, if the last long entry price is $100, it may set the take profit target at $102, and stop loss price at $95. This achieves dynamic tracking of the trends.
This strategy has the following advantages:
There are also some risks with this strategy:
To control risks, one can set stop loss, use trailing stops or options to lock in profits. Also, extensive testing of parameter combinations is necessary to find reliable ranges. Finally, execution time of indicators should be monitored to ensure timely signals.
This strategy can be improved in the following aspects:
During optimization, backtesting and paper trading should be utilized extensively to evaluate signal quality and stability. Only well-validated optimizations should be applied in live trading.
Overall this is a decent trend following strategy. It uses multiple indicators to gauge trends, sets up filters to reduce false signals, and can automatically adjust stops and targets to follow trends. With proper parameter tuning, it can smoothly catch mid to long-term trends. Next steps would be finding optimal parameters, and continue validating and improving the strategy.
/*backtest start: 2023-12-03 00:00:00 end: 2023-12-06 00:00:00 period: 3m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © RafaelZioni //@version=4 strategy(title = " BTC 15 min", overlay = true, pyramiding=1,initial_capital = 10000, default_qty_type= strategy.percent_of_equity, default_qty_value = 20, calc_on_order_fills=false, slippage=0,commission_type=strategy.commission.percent,commission_value=0.075) strat_dir_input = input(title="Strategy Direction", defval="all", options=["long", "short", "all"]) strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all strategy.risk.allow_entry_in(strat_dir_value) price = close length8 = input(30,title = 'length of channel') upmult = input(title = 'upper percent',type=input.float, step=0.1, defval=5) lowmult = input(title = 'lower percent',type=input.float, step=0.1, defval=5) basis = sma(close, length8) vup = upmult * price / 100 vlow = lowmult * price / 100 upper = basis + vup lower = basis - vlow plot(basis, color=color.red) // fastLength = input(3, title="Fast filter length ", minval=1) slowLength = input(21,title="Slow filter length", minval=1) source=close v1=ema(source,fastLength) v2=ema(source,slowLength) // leng=1 p1=close[1] len55 = 10 //taken from https://www.tradingview.com/script/Ql1FjjfX-security-free-MTF-example-JD/ HTF = input("1D", type=input.resolution) ti = change( time(HTF) ) != 0 T_c = fixnan( ti ? close : na ) vrsi = rsi(cum(change(T_c) * volume), leng) pp=wma(vrsi,len55) d=(vrsi[1]-pp[1]) len100 = 10 x=ema(d,len100) // zx=x/-1 col=zx > 0? color.lime : color.orange // tf10 = input("1", title = "Timeframe", type = input.resolution, options = ["1", "5", "15", "30", "60","120", "240","360","720", "D", "W"]) length = input(50, title = "Period", type = input.integer) shift = input(1, title = "Shift", type = input.integer) hma(_src, _length)=> wma((2 * wma(_src, _length / 2)) - wma(_src, _length), round(sqrt(_length))) hma3(_src, _length)=> p = length/2 wma(wma(close,p/3)*3 - wma(close,p/2) - wma(close,p),p) b =security(syminfo.tickerid, tf10, hma3(close[1], length)[shift]) //plot(a,color=color.gray) //plot(b,color=color.yellow) close_price = close[0] len = input(25) linear_reg = linreg(close_price, len, 0) buy=crossover(linear_reg, b) sell=crossunder(linear_reg, b) or crossunder(close[1],upper) // src2=low src3=high Min =input(15) leni = timeframe.isintraday and timeframe.multiplier >= 1 ? Min / timeframe.multiplier * 7 : timeframe.isintraday and timeframe.multiplier < 60 ? 60 / timeframe.multiplier * 24 * 7 : 7 l1 = wma(src2,leni) h1 = wma(src3,leni) // m=(h1+l1)/2 // len5 = 100 src5=m // multi = 2 mean = ema(src5, len5) stddev = multi * stdev(src5, len5) b5 = mean + stddev s5 = mean - stddev var bool long = na var bool short = na long :=crossover(src5, s5) short := crossunder(src5, b5) var float last_open_long = na var float last_open_short = na last_open_long := long ? close : nz(last_open_long[1]) last_open_short := short ? close : nz(last_open_short[1]) entry_value =last_open_long entry_value1=last_open_short r=100 // highb = highest(entry_value1, r) lowb = lowest(entry_value, r) d5 = highb - lowb me = (highb + lowb) / 2 h4 = highb - d5 * 0.236 c3 = highb - d5 * 0.382 c4 = highb - d5 * 0.618 l4 = highb - d5 * 0.764 // col2 = close >= me ? color.lime : color.red p5 = plot(upper, color=col2) p2 = plot(lower, color=col2) fill(p5, p2,color=col2) // Conditions longCond = bool(na) shortCond = bool(na) longCond := crossover(zx,0) or buy shortCond := sell // Count your long short conditions for more control with Pyramiding sectionLongs = 0 sectionLongs := nz(sectionLongs[1]) sectionShorts = 0 sectionShorts := nz(sectionShorts[1]) if longCond sectionLongs := sectionLongs + 1 sectionShorts := 0 sectionShorts if shortCond sectionLongs := 0 sectionShorts := sectionShorts + 1 sectionShorts // Pyramiding pyrl = 1 // These check to see your signal and cross references it against the pyramiding settings above longCondition = longCond and sectionLongs <= pyrl shortCondition = shortCond and sectionShorts <= pyrl // Get the price of the last opened long or short last_open_longCondition = float(na) last_open_shortCondition = float(na) last_open_longCondition := longCondition ? open : nz(last_open_longCondition[1]) last_open_shortCondition := shortCondition ? open : nz(last_open_shortCondition[1]) // Check if your last postion was a long or a short last_longCondition = float(na) last_shortCondition = float(na) last_longCondition := longCondition ? time : nz(last_longCondition[1]) last_shortCondition := shortCondition ? time : nz(last_shortCondition[1]) in_longCondition = last_longCondition > last_shortCondition in_shortCondition = last_shortCondition > last_longCondition // Take profit isTPl = true //isTPs = input(false, "Take Profit Short") tp = input(2, "Exit Profit %", type=input.float) long_tp = isTPl and crossover(high, (1 + tp / 100) * last_open_longCondition) and longCondition == 0 and in_longCondition == 1 //short_tp = isTPs and crossunder(low, (1 - tp / 100) * last_open_shortCondition) and //shortCondition == 0 and in_shortCondition == 1 // Stop Loss isSLl = input(true,"buy Loss Long") //isSLs = input(false, "buy Loss Short") sl = 0.0 sl := input(5, " rebuy %", type=input.float) long_sl = isSLl and crossunder(low, (1 - sl / 100) * last_open_longCondition) and longCondition == 0 and in_longCondition == 1 //short_sl = isSLs and crossover(high, (1 + sl / 100) * last_open_shortCondition) and //shortCondition == 0 and in_shortCondition == 1 // // Conditions longCond5 = bool(na) shortCond5 = bool(na) longCond5 := longCondition shortCond5 := long_tp // sectionLongs5 = 0 sectionLongs5 := nz(sectionLongs5[1]) sectionShorts5 = 0 sectionShorts5 := nz(sectionShorts5[1]) if longCond5 sectionLongs5 := sectionLongs5 + 1 sectionShorts5 := 0 sectionShorts5 if shortCond5 sectionLongs5 := 0 sectionShorts5 := sectionShorts5 + 1 sectionShorts5 // pyr5 = 1 longCondition5 = longCond5 and sectionLongs5 <= pyr5 shortCondition5 = shortCond5 and sectionShorts5 <= pyr5 // Get the price of the last opened long or short last_open_longCondition5 = float(na) last_open_shortCondition5 = float(na) last_open_longCondition5 := longCondition5 ? open : nz(last_open_longCondition5[1]) last_open_shortCondition5 := shortCondition5 ? open : nz(last_open_shortCondition5[1]) last_longCondition5 = float(na) last_shortCondition5 = float(na) last_longCondition5 := longCondition5 ? time : nz(last_longCondition5[1]) last_shortCondition5 := shortCondition5 ? time : nz(last_shortCondition5[1]) in_longCondition5 = last_longCondition5 > last_shortCondition5 in_shortCondition5 = last_shortCondition5 > last_longCondition5 // filter=input(true) g(v, p) => round(v * (pow(10, p))) / pow(10, p) risk = input(100) leverage = input(1) c = g((strategy.equity * leverage / open) * (risk / 100), 4) // l =(v1 > v2 or filter == false ) and longCondition or long_sl // //l = longCondition or long_sl s=shortCondition5 if l strategy.entry("buy", strategy.long,c) if s strategy.entry("sell", strategy.short,c) per(pcnt) => strategy.position_size != 0 ? round(pcnt / 100 * strategy.position_avg_price / syminfo.mintick) : float(na) stoploss=input(title=" stop loss", defval=5, minval=0.01) los = per(stoploss) q1=input(title=" qty_percent1", defval=50, minval=1) q2=input(title=" qty_percent2", defval=50, minval=1) tp10=input(title=" Take profit1", defval=1, minval=0.01) tp20=input(title=" Take profit2", defval=2, minval=0.01) strategy.exit("x1", qty_percent = q1, profit = per(tp10), loss = los) strategy.exit("x2", qty_percent = q2, profit = per(tp20), loss = los)