This strategy adopts a multi-timeframe moving average system, combined with RSI and other technical indicators, to achieve automatic switching between long and short positions. The strategy name is “Multi-Timeframe Moving Average System Trading Strategy”. The main idea is to generate more reliable trading signals by comparing price trends over different time periods.
The core indicators of this strategy are the moving average system. The strategy uses multiple moving average indicators such as JMA, TEMA, DEMA to calculate price trends over different periods like 15min, 30min, 60min. For example, the MA trend calculated by JMA in the 15min timeframe represents the price trend judgement within that timeframe. Then the strategy compares price trends between different timeframes to identify divergences between longer and shorter trends. If significant divergences are detected, trading signals will be generated. In addition, the strategy also incorporates other indicators like RSI and Wave Trend to ensure reliability of trading signals.
Specifically, the trend, trend2 and trend3 variables in the strategy represent price trends of the 15min, 30min and 60min timeframes respectively. If there is a 15min price reversal, while 30min and 60min has not reversed yet, it is judged as a divergence between shorter and longer trends, hence producing a trading signal. No signals will be generated if trends of all timeframes are consistent.
By comparing relationships between multiple timeframes and filtering out some false signals, more reliable trading signals can be generated – this is the core idea of the strategy.
The main advantages of this strategy are:
Some risks also exist with this strategy:
We can take the following measures to mitigate the above risks:
There is room for further optimization of this strategy:
This strategy compares multi-timeframe price trends to identify longer versus shorter term relationships, and generates trading signals through analyzing multiple indicators – achieving automatic switching between longs and shorts with good backtest results. We also identified some areas of improvement via methods like machine learning, adaptive slippage and volume confirmation to further enhance real-trading performance.
/*backtest start: 2023-11-11 00:00:00 end: 2023-12-11 00:00:00 period: 4h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=2 strategy("Drexel Strategy", overlay=true ) Length1=7 Length2=9 Multiplier=input(1.5,"Multiplier") jma(src,length) => beta = 0.45*(length-1)/(0.45*(length-1)+2) alpha = beta tmp0 = (1-alpha)*src + alpha*nz(tmp0[1]) tmp1 = (src - tmp0[0])*(1-beta) + beta*nz(tmp1[1]) tmp2 = tmp0[0] + tmp1[0] tmp3 = (tmp2[0] - nz(tmp4[1]))*((1-alpha)*(1-alpha)) + (alpha*alpha)*nz(tmp3[1]) tmp4 = nz(tmp4[1]) + tmp3[0] JMA = tmp4 JMA rsx(src,length) => f90_ = (nz(f90_[1]) == 0.0) ? 1.0 : (nz(f88[1]) <= nz(f90_[1])) ? nz(f88[1])+1 : nz(f90_[1])+1 f88 = (nz(f90_[1]) == 0.0) and (length-1 >= 5) ? length-1.0 : 5.0 f8 = 100.0*(src) f18 = 3.0 / (length + 2.0) f20 = 1.0 - f18 f10 = nz(f8[1]) v8 = f8 - f10 f28 = f20 * nz(f28[1]) + f18 * v8 f30 = f18 * f28 + f20 * nz(f30[1]) vC = f28 * 1.5 - f30 * 0.5 f38 = f20 * nz(f38[1]) + f18 * vC f40 = f18 * f38 + f20 * nz(f40[1]) v10 = f38 * 1.5 - f40 * 0.5 f48 = f20 * nz(f48[1]) + f18 * v10 f50 = f18 * f48 + f20 * nz(f50[1]) v14 = f48 * 1.5 - f50 * 0.5 f58 = f20 * nz(f58[1]) + f18 * abs(v8) f60 = f18 * f58 + f20 * nz(f60[1]) v18 = f58 * 1.5 - f60 * 0.5 f68 = f20 * nz(f68[1]) + f18 * v18 f70 = f18 * f68 + f20 * nz(f70[1]) v1C = f68 * 1.5 - f70 * 0.5 f78 = f20 * nz(f78[1]) + f18 * v1C f80 = f18 * f78 + f20 * nz(f80[1]) v20 = f78 * 1.5 - f80 * 0.5 f0 = ((f88 >= f90_) and (f8 != f10)) ? 1.0 : 0.0 f90 = ((f88 == f90_) and (f0 == 0.0)) ? 0.0 : f90_ v4_ = ((f88 < f90) and (v20 > 0.0000000001)) ? (v14 / v20 + 1.0) * 50.0 : 50.0 rsx = ((v4_ > 100.0) ? 100.0 : (v4_ < 0.0) ? 0.0 : v4_)-50 rsx xPrice=open emaA = ema(xPrice, Length2) Xprice = rsx(open,14) XPrice = high, xprice = low xe1 = jma(xPrice, Length1) xe11 = jma(Xprice[1],Length1) xe111 = jma(XPrice[1],Length1) xe1111=jma(xprice[1],Length1) xe2 = jma(xe1, Length1) xe21 = jma(xe111, Length1) xe3 = jma(xe2, Length1) xe31 = jma(xe1111,Length2) xe3a = jma(xe2,Length1) xe4 = jma(xe3, Length1) xe5 = jma(xe4, Length1) xe6 = jma(xe5, Length1) b = 0.7 c1 = -b*b*b c2 = 3*b*b+3*b*b*b c3 = -6*b*b-3*b-3*b*b*b c3a = nz(c3a[1]) c4 = 1+3*b+b*b*b+3*b*b TEMA = c1 * xe6 + c2 * xe5 + c3 * xe4 + c4 * xe3 DEMA = 2 * emaA - ema(emaA, Length2) Length(mod)=>(mod*c3a)+Length2 Trend1=TEMA/DEMA a=rsx(open,Length(2)) b1=rsx(open,Length(3)) c=rsx(open,Length(5)) d=rsx(open,Length(8)) e=rsx(open,Length(13)) f=rsx(open,Length(21)) g=rsx(open,Length(34)) h=rsx(open,Length(55)) i=rsx(open,Length(89)) j=rsx(open,Length(144)) trend1 = (((a-b1)+(c-d)+(e-f)+(g-h)+(i-j))/10) trend = trend1>0?avg(a,b,c4,c2):trend1==0?XPrice:avg(rsx(open,24),jma(open,24),rsx(jma(open,24),24)) trend2 = trend1>0?avg(d,e,c2,c1):trend1==0?XPrice:avg(rsx(open,48),jma(open,48),rsx(jma(open,48),48)) trend3 = trend1>0?avg(d,e,c2,c1):trend1==0?xprice:avg(rsx(open,96),jma(open,96),rsx(jma(open,96),96)) bc=request.security(syminfo.tickerid,'15',trend) bc1=request.security(syminfo.tickerid,'15',trend2) bc2=request.security(syminfo.tickerid,'15',trend3) bd=request.security(syminfo.tickerid,'30',trend) bd1=request.security(syminfo.tickerid,'30',trend2) bd2=request.security(syminfo.tickerid,'30',trend3) be=request.security(syminfo.tickerid,'60',trend) be1=request.security(syminfo.tickerid,'60',trend2) be2=request.security(syminfo.tickerid,'60',trend3) bf=request.security(syminfo.tickerid,'120',trend) bf1=request.security(syminfo.tickerid,'120',trend2) bf2=request.security(syminfo.tickerid,'120',trend3) bg=request.security(syminfo.tickerid,'240',trend) bg1=request.security(syminfo.tickerid,'240',trend2) bg2=request.security(syminfo.tickerid,'240',trend3) bh=request.security(syminfo.tickerid,'D',trend) bh1=request.security(syminfo.tickerid,'D',trend2) bh2=request.security(syminfo.tickerid,'D',trend3) Trend=((bc-bc1)+(bd-bd1)+(be-be1)+(bf-bf1)+(bg-bg1)+(bh)) Trend11=((bc-bc1)+(bd-bd1)+(be-be1)+(bf-bf1)+(bg-bg1)+(bh1)) Trend33 = max(min(min(min(bc2,bd2),min(be2,bf2)),bg2),bh2) AverageTrend=sma(Trend1,1000) StdDev=Multiplier*stdev(Trend1,1000) TopBand=AverageTrend+StdDev BotBand=AverageTrend-StdDev ap=open n1=10 n2=21 esa1 = jma(ap, n1) d1 = jma(abs(ap - esa1), n1) x1 = trend3==Trend33 y1 = trend2==Trend11 ci = (ap - esa1) / (0.015 * d1) tci = jma(ci, n2) wt1=tci wt2=sma(wt1,4) fast=jma(open,5) slow=jma(open,13) macd=fast-slow signal=sma(macd,4) WaveTrend1=wt1-wt2 JMACD1=macd-signal rsi = (((rsi(open,6))-50)*3) g1=rsi>Trend1 and WaveTrend1>Trend1 and JMACD1>Trend1 h1=g1?tci*c3a:nz(h[1]) strategy.entry("Long",true,when=x1) strategy.close("Long",y1) strategy.entry("Short",false,when=y1) strategy.close("Short",x1)