This strategy is a channel-based stop loss strategy that utilizes the EMA indicator. It integrates trend judgment, channel tracking, and dynamic stop loss and other mainstream technical indicators. It determines bull and bear cycles by judging the order of EMAs and combines ATR channel tracking to implement stop loss so that the stop loss point can continue to track price movements. This kind of stop loss idea is more active and effectively avoids the probability of too aggressive stop loss being broken through.
The strategy mainly uses three EMA curves with different cycles to determine bull and bear state. The specific judging rules are:
After determining the bull and bear cycle, the strategy uses SMMA sampled K-line price and ATR indicator multiples as the channel range. Trading signals are only issued when the price breaks through this channel. In addition, after the trading signal is issued, the ATR dynamic tracking stop loss mechanism will be activated to adjust the stop loss position in real time to ensure that the stop loss point can follow the price movement to improve the effectiveness of stop loss.
The main advantages of this strategy are:
The main risks of this strategy are concentrated in the problems caused by improper parameter settings, such as overtrading and stop loss being broken through. Optimization can be done from the following aspects:
This strategy integrates multiple mainstream technical indicators and methods such as trend judgment, channel trading, and dynamic stop loss to form a relatively complete stop loss trading system. There is still great room for optimization in parameter tuning and risk control. It is suitable for investors who have high requirements for stop loss.
/*backtest start: 2023-12-10 00:00:00 end: 2023-12-12 04:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © kgynofomo //@version=5 strategy(title="[Salavi] | Andy Advance Pro Strategy [ETH|M15]",overlay = true, pyramiding = 1,initial_capital = 10000, default_qty_type = strategy.cash,default_qty_value = 10000) ema_short = ta.ema(close,5) ema_middle = ta.ema(close,20) ema_long = ta.ema(close,40) cycle_1 = ema_short>ema_middle and ema_middle>ema_long cycle_2 = ema_middle>ema_short and ema_short>ema_long cycle_3 = ema_middle>ema_long and ema_long>ema_short cycle_4 = ema_long>ema_middle and ema_middle>ema_short cycle_5 = ema_long>ema_short and ema_short>ema_middle cycle_6 = ema_short>ema_long and ema_long>ema_middle bull_cycle = cycle_1 or cycle_2 or cycle_3 bear_cycle = cycle_4 or cycle_5 or cycle_6 // label.new("cycle_1") // bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na) // bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na) // bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na) // bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na) // bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na) // bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na) // Inputs a = input(2, title='Key Vaule. \'This changes the sensitivity\'') c = input(7, title='ATR Period') h = false xATR = ta.atr(c) nLoss = a * xATR src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close xATRTrailingStop = 0.0 iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1 xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2 pos = 0 iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0) pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3 xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue ema = ta.ema(src, 1) above = ta.crossover(ema, xATRTrailingStop) below = ta.crossover(xATRTrailingStop, ema) buy = src > xATRTrailingStop and above sell = src < xATRTrailingStop and below barbuy = src > xATRTrailingStop barsell = src < xATRTrailingStop atr = ta.atr(14) atr_length = input.int(25) atr_rsi = ta.rsi(atr,atr_length) atr_valid = atr_rsi>50 long_condition = buy and bull_cycle and atr_valid short_condition = sell and bear_cycle and atr_valid Exit_long_condition = short_condition Exit_short_condition = long_condition if long_condition strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here") if Exit_long_condition strategy.close("Andy Buy",comment="Andy Buy Out") // strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here") // strategy.close("Andy fandan Buy",comment="Andy short Out") if short_condition strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here") // strategy.exit("STR","Long",stop=longstoploss) if Exit_short_condition strategy.close("Andy Short",comment="Andy short Out") // strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here") // strategy.close("Andy fandan Short",comment="Andy Buy Out") inLongTrade = strategy.position_size > 0 inLongTradecolor = #58D68D notInTrade = strategy.position_size == 0 inShortTrade = strategy.position_size < 0 // bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na) plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na) plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny) plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny) // //atr > close *0.01* parameter // // MONTHLY TABLE PERFORMANCE - Developed by @QuantNomad // // ************************************************************************************************************************************************************************************************************************************************************************* // show_performance = input.bool(true, 'Show Monthly Performance ?', group='Performance - credits: @QuantNomad') // prec = input(2, 'Return Precision', group='Performance - credits: @QuantNomad') // if show_performance // new_month = month(time) != month(time[1]) // new_year = year(time) != year(time[1]) // eq = strategy.equity // bar_pnl = eq / eq[1] - 1 // cur_month_pnl = 0.0 // cur_year_pnl = 0.0 // // Current Monthly P&L // cur_month_pnl := new_month ? 0.0 : // (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 // // Current Yearly P&L // cur_year_pnl := new_year ? 0.0 : // (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 // // Arrays to store Yearly and Monthly P&Ls // var month_pnl = array.new_float(0) // var month_time = array.new_int(0) // var year_pnl = array.new_float(0) // var year_time = array.new_int(0) // last_computed = false // if (not na(cur_month_pnl[1]) and (new_month or barstate.islastconfirmedhistory)) // if (last_computed[1]) // array.pop(month_pnl) // array.pop(month_time) // array.push(month_pnl , cur_month_pnl[1]) // array.push(month_time, time[1]) // if (not na(cur_year_pnl[1]) and (new_year or barstate.islastconfirmedhistory)) // if (last_computed[1]) // array.pop(year_pnl) // array.pop(year_time) // array.push(year_pnl , cur_year_pnl[1]) // array.push(year_time, time[1]) // last_computed := barstate.islastconfirmedhistory ? true : nz(last_computed[1]) // // Monthly P&L Table // var monthly_table = table(na) // if (barstate.islastconfirmedhistory) // monthly_table := table.new(position.bottom_center, columns = 14, rows = array.size(year_pnl) + 1, border_width = 1) // table.cell(monthly_table, 0, 0, "", bgcolor = #cccccc) // table.cell(monthly_table, 1, 0, "Jan", bgcolor = #cccccc) // table.cell(monthly_table, 2, 0, "Feb", bgcolor = #cccccc) // table.cell(monthly_table, 3, 0, "Mar", bgcolor = #cccccc) // table.cell(monthly_table, 4, 0, "Apr", bgcolor = #cccccc) // table.cell(monthly_table, 5, 0, "May", bgcolor = #cccccc) // table.cell(monthly_table, 6, 0, "Jun", bgcolor = #cccccc) // table.cell(monthly_table, 7, 0, "Jul", bgcolor = #cccccc) // table.cell(monthly_table, 8, 0, "Aug", bgcolor = #cccccc) // table.cell(monthly_table, 9, 0, "Sep", bgcolor = #cccccc) // table.cell(monthly_table, 10, 0, "Oct", bgcolor = #cccccc) // table.cell(monthly_table, 11, 0, "Nov", bgcolor = #cccccc) // table.cell(monthly_table, 12, 0, "Dec", bgcolor = #cccccc) // table.cell(monthly_table, 13, 0, "Year", bgcolor = #999999) // for yi = 0 to array.size(year_pnl) - 1 // table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor = #cccccc) // y_color = array.get(year_pnl, yi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40) // table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor = y_color, text_color=color.new(color.white, 0)) // for mi = 0 to array.size(month_time) - 1 // m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 // m_col = month(array.get(month_time, mi)) // m_color = array.get(month_pnl, mi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40) // table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor = m_color, text_color=color.new(color.white, 0))