The strategy is named “Mean Reversion Reverse Strategy Based on Moving Average”. The main idea is to buy when price breaks through key moving averages and take profit when reaching preset targets.
The main principle of this strategy is to capture rebound opportunities in range-bound markets by using the reversion of short-term moving averages. Specifically, when prices break through longer cycle moving averages (such as 20-day and 50-day MAs) and show signs of strong overselling, prices tend to rebound to some extent due to the mean reversion characteristic of market fluctuations. At this time, if shorter cycle moving averages (such as 10-day MA) show upward reversal signal, it would be a good timing to buy. In this strategy, it will buy when the close price is below 20-day MA while above 50-day MA, in order to capture its rebound with short-term MA reversal.
The specific entry logic is: Buy 1 lot when price breaks through 20-day MA, add 1 lot when breaking through 50-day MA, continue to add 1 lot when breaking through 100-day MA, and add up to 1 lot when breaking through 200-day MA, for a maximum of 4 lots. Take profit after reaching the preset targets. It also sets time and stop loss conditions.
In general, this is a classic and universal MA trading strategy. It correctly utilizes the smoothing feature of MAs, combined with multiple MAs to identify short-term buying opportunities. It controls risks by pyramiding orders and timely profit taking. But its response to market events like significant policy news may be more passive. This is something that can be further optimized. Overall, with appropriate improvements in parameter optimization and risk control, this strategy can obtain steady excess returns.
/*backtest start: 2023-12-13 00:00:00 end: 2023-12-20 00:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("EMA_zorba1", shorttitle="zorba_ema", overlay=true) // Input parameters qt1 = input.int(5, title="Quantity 1", minval=1) qt2 = input.int(10, title="Quantity 2", minval=1) qt3 = input.int(15, title="Quantity 3", minval=1) qt4 = input.int(20, title="Quantity 4", minval=1) ema10 = ta.ema(close, 10) ema20 = ta.ema(close, 20) ema50 = ta.ema(close, 50) ema100 = ta.ema(close, 100) ema200 = ta.ema(close, 200) // Date range filter start_date = timestamp(year=2021, month=1, day=1) end_date = timestamp(year=2024, month=10, day=27) in_date_range = true // Profit condition profit_percentage = input(1, title="Profit Percentage") // Adjust this value as needed // Pyramiding setting pyramiding = input.int(2, title="Pyramiding", minval=1, maxval=10) // Buy conditions buy_condition_1 = in_date_range and close < ema20 and close > ema50 and close < open and close < low[1] buy_condition_2 = in_date_range and close < ema50 and close > ema100 and close < open and close < low[1] buy_condition_3 = in_date_range and close < ema100 and close > ema200 and close < open and close < low[1] buy_condition_4 = in_date_range and close < ema200 and close < open and close < low[1] // Exit conditions profit_condition = strategy.position_avg_price * (1 + profit_percentage / 100) <= close exit_condition_1 = in_date_range and (close > ema10 and ema10 > ema20 and ema10 > ema50 and ema10 > ema100 and ema10 > ema200 and close < open) and profit_condition and close < low[1] and close < low[2] exit_condition_2 = in_date_range and (close < ema10 and close[1] > ema10 and close < close[1] and ema10 > ema20 and ema10 > ema50 and ema10 > ema100 and ema10 > ema200 and close < open) and profit_condition and close < low[1] and close < low[2] // Exit condition for when today's close is less than the previous day's low //exit_condition_3 = close < low[1] // Strategy logic strategy.entry("Buy1", strategy.long, qty=qt1 * pyramiding, when=buy_condition_1) strategy.entry("Buy2", strategy.long, qty=qt2 * pyramiding, when=buy_condition_2) strategy.entry("Buy3", strategy.long, qty=qt3 * pyramiding, when=buy_condition_3) strategy.entry("Buy4", strategy.long, qty=qt4 * pyramiding, when=buy_condition_4) strategy.close("Buy1", when=exit_condition_1 or exit_condition_2) strategy.close("Buy2", when=exit_condition_1 or exit_condition_2) strategy.close("Buy3", when=exit_condition_1 or exit_condition_2) strategy.close("Buy4", when=exit_condition_1 or exit_condition_2)