This is an experimental quantitative trading strategy that combines moving average indicators and kNN machine learning algorithms to generate trading signals. It uses the crossovers of two VWMA lines with different periods to determine the trend direction, and uses MFI and ADX indicators to filter the signals through kNN algorithm to improve the reliability of the signals.
The core indicators of this strategy are two VWMA lines with different parameters, namely fast line and slow line. When the fast line crosses above the slow line, a buy signal is generated. When the fast line crosses below the slow line, a sell signal is generated. In addition, this strategy introduces two auxiliary indicators, MFI and ADX, to judge the reliability of the current signal under the current market conditions through the kNN classification algorithm.
The idea behind kNN algorithm is to compare new data with historical data to determine the results corresponding to the k most similar historical data, and categorize based on the majority vote of these k historical results. This strategy uses MFI and ADX as two input parameters of the kNN algorithm to determine the historical price movement (uptrend or downtrend) under this combination of indicators, thereby filtering the current signal to improve the signal quality.
Mitigations:
There is large room for optimizing this strategy:
Introducing more indicators and machine learning algorithms may further improve the stability and profitability of the strategy.
This is an experimental quantitative trading strategy based on VWMA indicators and kNN machine learning algorithms. It has the advantage of strong trend following capability while filtering signals via machine learning. The strategy has large room for expansion by introducing more features and optimization algorithms for better results. But as a novel strategy there are also risks that require further verification and improvement. Overall this strategy has great innovation potential.
/*backtest start: 2023-11-21 00:00:00 end: 2023-12-21 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © lastguru //@version=4 strategy(title="VWMA with kNN Machine Learning: MFI/ADX", shorttitle="VWMA + kNN: MFI/ADX", overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=100) ///////// // kNN // ///////// // Define storage arrays for: parameter 1, parameter 2, price, result (up = 1; down = -1) var knn1 = array.new_float(1, 0) var knn2 = array.new_float(1, 0) var knnp = array.new_float(1, 0) var knnr = array.new_float(1, 0) // Store the previous trade; buffer the current one until results are in _knnStore (p1, p2, src) => var prevp1 = 0.0 var prevp2 = 0.0 var prevsrc = 0.0 array.push(knn1, prevp1) array.push(knn2, prevp2) array.push(knnp, prevsrc) array.push(knnr, src >= prevsrc ? 1 : -1) prevp1 := p1 prevp2 := p2 prevsrc := src // Sort two arrays (MUST be of the same size) based on the first. // In other words, when an element in the first is moved, the element in the second moves as well. _knnGet(arr1, arr2, k) => sarr = array.copy(arr1) array.sort(sarr) ss = array.slice(sarr, 0, min(k, array.size(sarr))) m = array.max(ss) out = array.new_float(0) for i = 0 to array.size(arr1) - 1 if (array.get(arr1, i) <= m) array.push(out, array.get(arr2, i)) out // Create a distance array from the two given parameters _knnDistance(p1, p2) => dist = array.new_float(0) n = array.size(knn1) - 1 for i = 0 to n d = sqrt( pow(p1 - array.get(knn1, i), 2) + pow(p2 - array.get(knn2, i), 2) ) array.push(dist, d) dist // Make a prediction, finding k nearest neighbours _knn(p1, p2, k) => slice = _knnGet(_knnDistance(p1, p2), array.copy(knnr), k) knn = array.sum(slice) //////////// // Inputs // //////////// SRC = input(title="Source", type=input.source, defval=open) FAST = input(title="Fast Length", type=input.integer, defval=13) SLOW = input(title="Slow Length", type=input.integer, defval=19) FILTER = input(title="Filter Length", type=input.integer, defval=13) SMOOTH = input(title="Filter Smoothing", type=input.integer, defval=6) KNN = input(title="kNN nearest neighbors (k)", type=input.integer, defval=23) BACKGROUND = input(false,title = "Draw background") //////// // MA // //////// fastMA = vwma(SRC, FAST) slowMA = vwma(SRC, SLOW) ///////// // DMI // ///////// // Wilder's Smoothing (Running Moving Average) _rma(src, length) => out = 0.0 out := ((length - 1) * nz(out[1]) + src) / length // DMI (Directional Movement Index) _dmi (len, smooth) => up = change(high) down = -change(low) plusDM = na(up) ? na : (up > down and up > 0 ? up : 0) minusDM = na(down) ? na : (down > up and down > 0 ? down : 0) trur = _rma(tr, len) plus = fixnan(100 * _rma(plusDM, len) / trur) minus = fixnan(100 * _rma(minusDM, len) / trur) sum = plus + minus adx = 100 * _rma(abs(plus - minus) / (sum == 0 ? 1 : sum), smooth) [plus, minus, adx] [diplus, diminus, adx] = _dmi(FILTER, SMOOTH) ///////// // MFI // ///////// // common RSI function _rsi(upper, lower) => if lower == 0 100 if upper == 0 0 100.0 - (100.0 / (1.0 + upper / lower)) mfiUp = sum(volume * (change(ohlc4) <= 0 ? 0 : ohlc4), FILTER) mfiDown = sum(volume * (change(ohlc4) >= 0 ? 0 : ohlc4), FILTER) mfi = _rsi(mfiUp, mfiDown) //////////// // Filter // //////////// longCondition = crossover(fastMA, slowMA) shortCondition = crossunder(fastMA, slowMA) if (longCondition or shortCondition) _knnStore(adx, mfi, SRC) filter = _knn(adx, mfi, KNN) ///////////// // Actions // ///////////// bgcolor(BACKGROUND ? filter >= 0 ? color.green : color.red : na) plot(fastMA, color=color.red) plot(slowMA, color=color.green) if (longCondition and filter >= 0) strategy.entry("Long", strategy.long) if (shortCondition and filter < 0) strategy.entry("Short", strategy.short)