This strategy is based on the Empirical Mode Decomposition (EMD) method to decompose the price series and extract features from different frequency bands, combined with the mean to generate trading signals. It is mainly applicable for medium and long term holdings.
This strategy uses the empirical mode decomposition method to extract features from the price series and generates trading signals based on the extracted features, realizing a stable medium and long term trading strategy. The advantage of this strategy is that it can effectively identify periodic features in prices and issue trading orders during large fluctuations. But there are also certain risks, and further optimization is needed to adapt to more complex market environments.
/*backtest start: 2022-12-15 00:00:00 end: 2023-12-21 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=2 //////////////////////////////////////////////////////////// // Copyright by HPotter v1.0 12/04/2017 // The related article is copyrighted material from Stocks & Commodities Mar 2010 // You can use in the xPrice any series: Open, High, Low, Close, HL2, HLC3, OHLC4 and ect... // // You can change long to short in the Input Settings // Please, use it only for learning or paper trading. Do not for real trading. //////////////////////////////////////////////////////////// strategy(title="Empirical Mode Decomposition") Length = input(20, minval=1) Delta = input(0.5) Fraction = input(0.1) reverse = input(false, title="Trade reverse") xPrice = hl2 beta = cos(3.1415 * (360 / Length) / 180) gamma = 1 / cos(3.1415 * (720 * Delta / Length) / 180) alpha = gamma - sqrt(gamma * gamma - 1) xBandpassFilter = 0.5 * (1 - alpha) * (xPrice - xPrice[2]) + beta * (1 + alpha) * nz(xBandpassFilter[1]) - alpha * nz(xBandpassFilter[2]) xMean = sma(xBandpassFilter, 2 * Length) xPeak = iff (xBandpassFilter[1] > xBandpassFilter and xBandpassFilter[1] > xBandpassFilter[2], xBandpassFilter[1], nz(xPeak[1])) xValley = iff (xBandpassFilter[1] < xBandpassFilter and xBandpassFilter[1] < xBandpassFilter[2], xBandpassFilter[1], nz(xValley[1])) xAvrPeak = sma(xPeak, 50) xAvrValley = sma(xValley, 50) nAvrPeak = Fraction * xAvrPeak nAvrValley = Fraction * xAvrValley pos = iff(xMean > nAvrPeak and xMean > nAvrValley, 1, iff(xMean < nAvrPeak and xMean < nAvrValley, -1, nz(pos[1], 0))) possig = iff(reverse and pos == 1, -1, iff(reverse and pos == -1, 1, pos)) if (possig == 1) strategy.entry("Long", strategy.long) if (possig == -1) strategy.entry("Short", strategy.short) barcolor(possig == -1 ? red: possig == 1 ? green : blue ) plot(xMean, color=red, title="Mean") plot(nAvrPeak, color=blue, title="Peak") plot(nAvrValley, color=blue, title="Valley")