This strategy implements a robust trend-following strategy based on Bollinger Bands, moving averages, and volume analysis. It aims to capture potential trend reversals and capitalize on market momentum.
Bollinger Bands
Utilizes Bollinger Bands to identify overbought and oversold conditions in the market. Provides clear upper and lower band visualizations to aid decision-making.
Calculates bands based on the middle value and standard deviation over a certain period. Price crossing upper or lower band indicates overbought or oversold signals.
Moving Average Filter
Implements a moving average (MA) filter to enhance trend identification. Users can choose from various MA types including Simple, Exponential, Weighted.
Generates buy (sell) signals when price crosses above (below) moving average.
Volume Analysis
Allows users to integrate volume analysis into the strategy for enhanced signal confirmation. Color-coded volume bars indicate whether volume is above or below the average.
Volume crossing average can be used to confirm price signals.
Robust Trend Following
Identifies market trend reversals based on Bollinger Bands, moving averages and volume.
Captures price trends in a timely manner for trend trading.
Flexibility & Customization
Users can optimize parameters like BB period, MA type and length.
Long and short positions can be controlled separately.
Visualization & Confirmation
Dual signal mechanism confirming price signals using MA and volume.
Intuitive display of key trading signals like moving averages, stop-loss levels.
Risk Management
Calculates stop-loss based on ATR. Customizable ATR period and multiplier.
Adjusts position size based on percentage of equity at risk to control single trade loss.
Backtest Period Risks
Trend Reversal Risks
Over-optimization
Lagging Indicator Risks
Parameter Optimization
Position Optimization
Signal Optimization
Code Optimization
The strategy integrates Bollinger Bands, moving averages and volume analysis into a mechanical trend trading system. Its strength lies within robust signal confirmation and risk control mechanisms. Further improvements can be made via parameter and signal optimization to enhance stability and profitability. The strategy methodology serves as a reference for trend followers.
/*backtest start: 2023-11-25 00:00:00 end: 2023-12-25 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © sosacur01 //@version=5 strategy(title="Bollinger Band | Trend Following", overlay=true, pyramiding=1, commission_type=strategy.commission.percent, commission_value=0.2, initial_capital=10000) //-------------------------------------- //BACKTEST RANGE useDateFilter = input.bool(true, title="Filter Date Range of Backtest", group="Backtest Time Period") backtestStartDate = input(timestamp("1 jan 2017"), title="Start Date", group="Backtest Time Period", tooltip="This start date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") backtestEndDate = input(timestamp("1 jul 2100"), title="End Date", group="Backtest Time Period", tooltip="This end date is in the time zone of the exchange " + "where the chart's instrument trades. It doesn't use the time " + "zone of the chart or of your computer.") inTradeWindow = true if not inTradeWindow and inTradeWindow[1] strategy.cancel_all() strategy.close_all(comment="Date Range Exit") //-------------------------------------- //LONG/SHORT POSITION ON/OFF INPUT LongPositions = input.bool(title='On/Off Long Postion', defval=true, group="Long & Short Position") ShortPositions = input.bool(title='On/Off Short Postion', defval=true, group="Long & Short Position") //-------------------------------------- //MA INPUTS averageType1 = input.string(defval="WMA", group="MA", title="MA Type", options=["SMA", "EMA", "WMA", "HMA", "RMA", "SWMA", "ALMA", "VWMA", "VWAP"]) averageLength1 = input.int(defval=99, title="MA Lenght", group="MA") averageSource1 = input(close, title="MA Source", group="MA") //MA TYPE MovAvgType1(averageType1, averageSource1, averageLength1) => switch str.upper(averageType1) "SMA" => ta.sma(averageSource1, averageLength1) "EMA" => ta.ema(averageSource1, averageLength1) "WMA" => ta.wma(averageSource1, averageLength1) "HMA" => ta.hma(averageSource1, averageLength1) "RMA" => ta.rma(averageSource1, averageLength1) "SWMA" => ta.swma(averageSource1) "ALMA" => ta.alma(averageSource1, averageLength1, 0.85, 6) "VWMA" => ta.vwma(averageSource1, averageLength1) "VWAP" => ta.vwap(averageSource1) => runtime.error("Moving average type '" + averageType1 + "' not found!"), na //MA VALUES ma = MovAvgType1(averageType1, averageSource1, averageLength1) //MA CONDITIONS bullish_ma = close > ma bearish_ma = close < ma //PLOT COLOR ma_plot = if close > ma color.navy else color.rgb(49, 27, 146, 40) //MA PLOT plot(ma,color=ma_plot, linewidth=2, title="MA") //-------------------------------------- //BB INPUTS length = input.int(20, minval=1, group="BB") src = input(close, title="Source", group="BB") mult = input.float(2.0, minval=0.001, maxval=50, title="StdDev", group="BB") //BB VALUES basis = ta.sma(src, length) dev = mult * ta.stdev(src, length) upper = basis + dev lower = basis - dev offset = input.int(0, "Offset", minval = -500, maxval = 500) //BBPLOT //plot(basis, "Basis", color=#FF6D00, offset = offset) p1 = plot(upper, "Upper", color=#2978ffa4, offset = offset) p2 = plot(lower, "Lower", color=#2978ffa4, offset = offset) fill(p1, p2, title = "Background", color=color.rgb(33, 47, 243, 97)) //BB ENTRY AND EXIT CONDITIONS bb_long_entry = close >= upper bb_long_exit = close <= lower bb_short_entry = close <= lower bb_short_exit = close >= upper //--------------------------------------------------------------- //VOLUME INPUTS useVolumefilter = input.bool(title='Use Volume Filter?', defval=false, group="Volume Inputs") dailyLength = input.int(title = "MA length", defval = 30, minval = 1, maxval = 100, group = "Volume Inputs") lineWidth = input.int(title = "Width of volume bars", defval = 3, minval = 1, maxval = 6, group = "Volume Inputs") Volumefilter_display = input.bool(title="Color bars?", defval=false, group="Volume Inputs", tooltip = "Change bar colors when Volume is above average") //VOLUME VALUES volumeAvgDaily = ta.sma(volume, dailyLength) //VOLUME SIGNAL v_trigger = (useVolumefilter ? volume > volumeAvgDaily : inTradeWindow) //PLOT VOLUME SIGNAL barcolor(Volumefilter_display ? v_trigger ? color.new(#6fe477, 77):na: na, title="Volume Filter") //--------------------------------------------------------------- //ENTRIES AND EXITS long_entry = if inTradeWindow and bullish_ma and bb_long_entry and v_trigger and LongPositions true long_exit = if inTradeWindow and bb_long_exit true short_entry = if inTradeWindow and bearish_ma and bb_short_entry and v_trigger and ShortPositions true short_exit = if inTradeWindow and bb_short_exit true //-------------------------------------- //RISK MANAGEMENT - SL, MONEY AT RISK, POSITION SIZING atrPeriod = input.int(14, "ATR Length", group="Risk Management Inputs") sl_atr_multiplier = input.float(title="Long Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) sl_atr_multiplier_short = input.float(title="Short Position - Stop Loss - ATR Multiplier", defval=2, group="Risk Management Inputs", step=0.5) i_pctStop = input.float(2, title="% of Equity at Risk", step=.5, group="Risk Management Inputs")/100 //ATR VALUE _atr = ta.atr(atrPeriod) //CALCULATE LAST ENTRY PRICE lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1) //STOP LOSS - LONG POSITIONS var float sl = na //CALCULTE SL WITH ATR AT ENTRY PRICE - LONG POSITION if (strategy.position_size[1] != strategy.position_size) sl := lastEntryPrice - (_atr * sl_atr_multiplier) //IN TRADE - LONG POSITIONS inTrade = strategy.position_size > 0 //PLOT SL - LONG POSITIONS plot(inTrade ? sl : na, color=color.blue, style=plot.style_circles, title="Long Position - Stop Loss") //CALCULATE ORDER SIZE - LONG POSITIONS positionSize = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier) //============================================================================================ //STOP LOSS - SHORT POSITIONS var float sl_short = na //CALCULTE SL WITH ATR AT ENTRY PRICE - SHORT POSITIONS if (strategy.position_size[1] != strategy.position_size) sl_short := lastEntryPrice + (_atr * sl_atr_multiplier_short) //IN TRADE SHORT POSITIONS inTrade_short = strategy.position_size < 0 //PLOT SL - SHORT POSITIONS plot(inTrade_short ? sl_short : na, color=color.red, style=plot.style_circles, title="Short Position - Stop Loss") //CALCULATE ORDER - SHORT POSITIONS positionSize_short = (strategy.equity * i_pctStop) / (_atr * sl_atr_multiplier_short) //=============================================== //LONG STRATEGY strategy.entry("Long", strategy.long, comment="Long", when = long_entry, qty=positionSize) if (strategy.position_size > 0) strategy.close("Long", when = (long_exit), comment="Close Long") strategy.exit("Long", stop = sl, comment="Exit Long") //SHORT STRATEGY strategy.entry("Short", strategy.short, comment="Short", when = short_entry, qty=positionSize_short) if (strategy.position_size < 0) strategy.close("Short", when = (short_exit), comment="Close Short") strategy.exit("Short", stop = sl_short, comment="Exit Short") //ONE DIRECTION TRADING COMMAND (BELLOW ONLY ACTIVATE TO CORRECT BUGS) //strategy.risk.allow_entry_in(strategy.direction.long)