This article mainly explains a momentum oscillation trading strategy based on the Stochastic RSI indicator. The strategy adopts shorter cycle technical indicators (such as 30 minutes) to make trading decisions based on whether the Stochastic RSI enters the overbought/oversold region. Compared with other momentum strategies, this strategy combines the advantages of both RSI and Stochastic indicators to more accurately capture short-term market oscillations.
The core indicator of the strategy is Stochastic RSI. The calculation formula of Stochastic RSI is:
Stochastic RSI = (RSI - RSI Low) / (RSI High - RSI Low) * 100
Where RSI is calculated using the lengthRSI parameter (default 12), and Stochastic RSI is calculated using the lengthStoch parameter (default 12).
When Stochastic RSI is higher than the purple filled area, it is the overbought area, then go short; when Stochastic RSI is lower than the purple filled area, it is the oversold area, then go long.
In addition, the strategy also sets the moving average filter condition. Only when the fast EMA is higher than the slow EMA can you open a long position; only when the fast EMA is lower than the slow EMA can you open a short position. This avoids counter-trend trading.
Compared with a single RSI strategy, this strategy combines the Stochastic indicator to more clearly identify overbought/oversold areas, thereby improving the reliability of signals.
Compared with a single Stochastic strategy, this strategy uses RSI as the input data source of Stochastic, which can filter out some noise and make the signal more reliable.
The moving average filter condition is set to effectively avoid counter-trend positions building, thereby reducing unnecessary losses.
The position holding time delay is set to avoid being stopped out by false breakouts.
The strategy mainly uses short-cycle indicators, so it is only suitable for short-term operations and may not perform well in the long run.
The Stochastic RSI indicator itself has a certain lag and may miss signals after drastic price changes in the short term.
In oscillating markets, Stochastic RSI may produce multiple penetrations of overbought/oversold areas, which may lead to overtrading and increased transaction costs.
Different parameter combinations can be tested to further optimize the length, K and D values of Stochastic RSI.
Different RSI length parameters can be tested to find a more appropriate RSI cycle.
Try combining with other indicators to further improve signal accuracy, such as MACD, Bollinger Bands, etc.
Test different position holding delay parameters to find a more appropriate exit timing.
This article details the construction principles, advantages, risks and optimization ideas of a momentum strategy based on the Stochastic RSI indicator. Compared with single indicator strategies, this strategy utilizes the strengths of both RSI and Stochastic to more clearly and reliably identify short-term overbought/oversold phenomena in the market for reversal trading. Further performance improvements can be expected through parameter optimization and indicator combinations.
/*backtest start: 2023-11-25 00:00:00 end: 2023-12-25 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © Drun30 (Federico Magnani) //@version=4 //STRATEGIA PRINCIPALE capitaleIniziale=10000 var sizeordineInit= 50 // → % di capitale investita per ogni trade var deltaSize = 25 // → delta% di capitale investito se trade precedente è stato in perdita var sizeLimite = 100 //il trade non userà mai questa percentuale di capitale investito var sizeordine = sizeordineInit //Parametri ottimali 30 min usiShort=false usiLong=true ipercomprato=85.29 ipervenduto=30.6 // strategy("Momentum Strategy (V7.B.4)", initial_capital=capitaleIniziale, currency="USD", default_qty_type=strategy.percent_of_equity, commission_type=strategy.commission.percent, commission_value=0.1, slippage = 5, default_qty_value=sizeordineInit, overlay=false, pyramiding=0) backtest = input(title="------------------------Backtest Period------------------------", defval = false) start = timestamp(input(2020, "start year"), input(1, "start month"), input(1, "start day"), 00, 00) end = timestamp(input(0, "end year"), input(0, "end month"), input(0, "end day"), 00, 00) siamoindata=time > start?true:false if end > 0 siamoindata:=time > start and time <= end?true:false basicParameters = input(title="------------------------Basic Parameters------------------------", defval = false) smoothK = input(3, minval=1) smoothD = input(6, minval=1) lengthRSI = input(12, minval=1) src = input(close, title="RSI Source") rsi1 = rsi(src, lengthRSI) lengthStoch = input(12, minval=1) k = ema(stoch(rsi1, rsi1, rsi1, lengthStoch), smoothK) d = ema(k, smoothD) altezzaipercomprato= input(ipercomprato, title="Overbought Height", minval=1, type=input.float) altezzaipervenduto= input(ipervenduto, title="Oversold Height", minval=1,type=input.float) BarsDelay = input(6,title="Bars delay",minval=0) GambleSizing = input(true, title = "Gamble Sizing?",type=input.bool) gambleAdd = input(deltaSize,title="Gamble Add (%)",minval=0,type=input.integer) gambleLimit = input(sizeLimite,title="Gamble MAX (%)",minval=0,type=input.integer) if GambleSizing and strategy.closedtrades[0]>strategy.closedtrades[1] if strategy.losstrades[0]>strategy.losstrades[1] and sizeordine<gambleLimit sizeordine:=sizeordine+gambleAdd if strategy.wintrades[0]>strategy.wintrades[1] sizeordine:=sizeordineInit periodomediamobile_fast = input(1, title="Fast EMA length",minval=1) periodomediamobile_slow = input(60, title="Slow EMA length",minval=1) plot(k, color=color.blue) plot(d, color=color.orange) h0 = hline(altezzaipercomprato) h1 = hline(altezzaipervenduto) fill(h0, h1, color=color.purple, transp=80) // n=input(Vicinanzadalcentro,title="Vicinanza dal centro",minval=0) //sarebbe il livello di D in cui si acquista o si vende, maggiore è la vicinanza maggiore sarà la frequenza dei trades, SE 0 è DISABILITATO // siamoinipervenduto= d<=altezzaipervenduto and d<=d[n] and d>d[1]?true:false //and d<d[3] and d>d[1] // siamoinipercomprato= d>=altezzaipercomprato and d>=d[n] and d<d[1]?true:false //and d>d[3] and d<d[1] goldencross = crossover(k,d) deathcross = crossunder(k,d) // METTI VARIABILE IN CUI AVVIENE CROSSOVER O CROSSUNDER valoreoro = valuewhen(goldencross,d,0) valoremorte = valuewhen(deathcross,d,0) siamoinipervenduto = goldencross and valoreoro<=altezzaipervenduto?true:false//d<=altezzaipervenduto?true:false siamoinipercomprato = deathcross and valoremorte>=altezzaipercomprato?true:false//d>=altezzaipercomprato?true:false long_separator = input(title="------------------------LONG------------------------", defval = usiLong) sl_long_inp = input(10, title="Stop Loss LONG %", type=input.float) tp_long_inp = input(8, title="Take Profit LONG %",type=input.float) stop_level_long = strategy.position_avg_price * (1 - (sl_long_inp/100)) //strategy.position_avg_price corrisponde al prezzo con cui si è aperta la posizione take_level_long = strategy.position_avg_price * (1 + (tp_long_inp/100)) //BINANCE JSON_long = 'OPEN LONG: PUT THE JSON HERE FOR THE API CALL' JSON_chiusura = 'CLOSE POSITION: PUT THE JSON HERE FOR THE API CALL' webhookLong = JSON_long webhookClose= JSON_chiusura trendFilterL = input(title="TREND FILTER LONG?", defval = true) EMAfast=ema(close,periodomediamobile_fast) EMAslow=ema(close,periodomediamobile_slow) siamoinuptrend_ema=EMAfast>EMAslow?true:false //close>=EMAfast and EMAfast>EMAslow siamoinuptrend = siamoinuptrend_ema // CondizioneAperturaLong = siamoinipervenduto and siamoindata // and siamoinuptrend CondizioneAperturaLong = siamoinipervenduto and siamoindata and long_separator if trendFilterL CondizioneAperturaLong := siamoinipervenduto and siamoindata and long_separator and siamoinuptrend CondizioneChiusuraLong = siamoinipercomprato and siamoindata possiamoAprireLong=0 if trendFilterL and siamoinuptrend possiamoAprireLong:=5 plot(possiamoAprireLong,color=color.green) sonPassateLeBarreG = barssince(CondizioneAperturaLong) == BarsDelay?true:false sonPassateLeBarreD = barssince(CondizioneChiusuraLong) == BarsDelay?true:false haiUnLongAncoraAperto = false haiUnLongAncoraAperto := strategy.position_size>0?true:false // Se l'ultimo valore della serie "CondizioneAperturaLong" è TRUE, allora hai un long ancora aperto // Se l'ultimo valore della serie "CondizioneAperturaLong" è FALSE, allora: // Se l'ultimo valore della serie "CondizioneChiusuraLong" è TRUE, allora NON hai un long ancora aperto // Se l'ultimo valore della serie "CondizioneChiusuraLong" è FALSE, allora restituisce l'ultimo valore della serie "haiUnLongAncoraAperto" haiUnLongAncoraAperto_float = if(haiUnLongAncoraAperto==true) 10 else 0 plot(haiUnLongAncoraAperto_float,color=color.red) //FInché la linea rossa si trova a livello "1" allora c'è un ordine long in corso quantita = (sizeordine/100*(capitaleIniziale+strategy.netprofit))/valuewhen(haiUnLongAncoraAperto==false and CondizioneAperturaLong,close,0) plot(sizeordine,color=color.purple, linewidth=3) if strategy.position_size<=0 and CondizioneAperturaLong //and sonPassateLeBarreG and haiUnLongAncoraAperto==false strategy.opentrades==0 strategy.entry("Vamonos",strategy.long, alert_message=webhookLong, comment="OPEN LONG", qty=quantita) if strategy.position_size>0 //and sonPassateLeBarreD // and CondizioneChiusuraLong if siamoinuptrend == true and sonPassateLeBarreD strategy.close("Vamonos", alert_message=webhookClose, comment="CLOSE LONG") else if siamoinuptrend == false and CondizioneChiusuraLong strategy.close("Vamonos", alert_message=webhookClose, comment="CLOSE LONG") if strategy.position_size>0 and siamoindata strategy.exit("Vamonos", stop=stop_level_long, limit=take_level_long, comment="CLOSE LONG (LIMIT/STOP)") short_separator = input(title="------------------------SHORT------------------------", defval = usiShort) sl_short_inp = input(20, title="Stop Loss SHORT %") tp_short_inp = input(35, title="Take Profit SHORT %") stop_level_short = strategy.position_avg_price * (1 + (sl_short_inp/100)) take_level_short= strategy.position_avg_price * (1 - (tp_short_inp/100)) // BINANCE JSON_short = 'OPEN SHORT: PUT THE JSON HERE FOR THE API CALL' webhookShort = JSON_short trendFilterS = input(title="TREND FILTER SHORT?", defval = true) siamoindowntrend_ema=EMAfast<EMAslow?true:false //close<=EMAfast and EMAfast<EMAslow siamoindowntrend=siamoindowntrend_ema CondizioneAperturaShort = short_separator and siamoinipercomprato and siamoindata if trendFilterS CondizioneAperturaShort:=short_separator and siamoinipercomprato and siamoindata and siamoindowntrend CondizioneChiusuraShort = siamoinipervenduto and siamoindata sonPassateLeBarreGs = barssince(CondizioneAperturaShort) == BarsDelay?true:false sonPassateLeBarreDs = barssince(CondizioneChiusuraShort) == BarsDelay?true:false haiUnoShortAncoraAperto = false haiUnoShortAncoraAperto := strategy.position_size<0?true:false haiUnoShortAncoraAperto_float = if(haiUnoShortAncoraAperto==true) 15 else 0 plot(haiUnoShortAncoraAperto_float,color=color.purple) //FInché la linea viola si trova a livello "2" allora c'è un ordine short in corso if CondizioneAperturaShort and strategy.position_size>=0 //and haiUnoShortAncoraAperto==false strategy.entry("Andale",strategy.short,alert_message=webhookShort, comment="OPEN SHORT") if strategy.position_size<0 //and sonPassateLeBarreD // and CondizioneChiusuraLong if siamoindowntrend == true and sonPassateLeBarreDs strategy.close("Andale",alert_message=webhookClose, comment="CLOSE SHORT") else if siamoindowntrend == false and CondizioneChiusuraShort strategy.close("Andale",alert_message=webhookClose, comment="CLOSE SHORT") if strategy.position_size<0 and siamoindata strategy.exit("Andale", stop=stop_level_short, limit=take_level_short, comment="CLOSE SHORT (LIMIT/STOP)")