相对动量策略通过比较个股和指数的动量,来判断个股相对于大盘的强弱,当个股的动量高于大盘时买入,个股动量低于大盘时卖出,以捕捉个股的增长高峰。
该策略主要判断个股相对大盘的强弱,具体逻辑是:
通过这样的逻辑判断,我们可以买入个股增长旺盛的时期,并在其增长动力消退时及时卖出,锁定其增长高峰期的超额收益。
相对动量策略主要具有以下优势:
相对动量策略也存在一定的风险:
这些风险可以通过合理止盈止损、适当调整参数等方法来控制。
相对动量策略可从以下几个方面进行优化:
相对动量策略通过捕捉个股相对大盘的增长高峰,可有效获取超额收益。该策略具有简单清晰的买入卖出逻辑、易于操作的优点,通过参数优化和风险控制,可获得较好的效果。
/*backtest start: 2024-01-21 00:00:00 end: 2024-01-28 00:00:00 period: 15m basePeriod: 5m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © HeWhoMustNotBeNamed //@version=4 strategy("Relative Returns Strategy", overlay=false, initial_capital = 100000, default_qty_type = strategy.percent_of_equity, default_qty_value = 100, commission_type = strategy.commission.percent, pyramiding = 1, commission_value = 0.01, calc_on_order_fills = true) index_ticker=input("BTC_USDT:swap") Loopback = input(40, step=20) useStopAndIndexReturns = input(true) useStopAndIndexReturnsMa = input(true) useDifference = not useStopAndIndexReturns MAType = input(title="Moving Average Type", defval="sma", options=["ema", "sma", "hma", "rma", "vwma", "wma"]) MALength = input(10, minval=10,step=10) i_startTime = input(defval = timestamp("01 Jan 2010 00:00 +0000"), title = "Backtest Start Time", type = input.time) i_endTime = input(defval = timestamp("01 Jan 2099 00:00 +0000"), title = "Backtest End Time", type = input.time) inDateRange = true f_secureSecurity(_symbol, _res, _src, _offset) => security(_symbol, _res, _src[_offset], lookahead = barmerge.lookahead_on) f_getMovingAverage(source, MAType, length)=> ma = sma(source, length) if(MAType == "ema") ma := ema(source,length) if(MAType == "hma") ma := hma(source,length) if(MAType == "rma") ma := rma(source,length) if(MAType == "vwma") ma := vwma(source,length) if(MAType == "wma") ma := wma(source,length) ma index = f_secureSecurity(index_ticker, '1D', close, 0) stock_return = (close - close[Loopback])*100/close index_return = (index - index[Loopback])*100/index stock_return_ma = f_getMovingAverage(stock_return, MAType, MALength) index_return_ma = f_getMovingAverage(index_return, MAType, MALength) relativeReturns = stock_return - index_return relativeReturns_ma = f_getMovingAverage(relativeReturns, MAType, MALength) plot(useStopAndIndexReturns ? useStopAndIndexReturnsMa ? stock_return_ma : stock_return : na, title="StockReturn", color=color.green, linewidth=1) plot(useStopAndIndexReturns ? useStopAndIndexReturnsMa ? index_return_ma : index_return : na, title="IndexReturn", color=color.red, linewidth=1) plot(useDifference?relativeReturns:na, title="Relative-Returns", color=color.blue, linewidth=1) plot(useDifference?relativeReturns_ma:na, title="MA", color=color.red, linewidth=1) buyCondition = (useStopAndIndexReturns ? useStopAndIndexReturnsMa ? stock_return_ma > index_return_ma : stock_return > index_return : relativeReturns > relativeReturns_ma) closeBuyCondition = (useStopAndIndexReturns ? useStopAndIndexReturnsMa ? stock_return_ma < index_return_ma : stock_return < index_return : relativeReturns < relativeReturns_ma) strategy.entry("Buy", strategy.long, when=buyCondition and inDateRange, oca_name="oca") strategy.close("Buy", when=closeBuyCondition)